Browse > Article

Structure and Succession of Zooplankton Community in Several Artificial Lakes in the Han River System  

You, Kyung-A (Han River Environment Research Laboratory, National Institute of Environmental Research)
Park, Hae-Kyung (Han River Environment Research Laboratory, National Institute of Environmental Research)
Kong, Dong-Soo (Department of Life Science, Kyonggi University)
Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
Publication Information
Abstract
Structure and succession of zooplankton community studied by hydraulic and ecological characteristics targeting the five lakes in the Han river system from March to December 2008. Results separated by river-type lake and lake-type lake depending on the type of hydraulic, Paldang lake and Cheongpyeong lake were river-type lake, while Chungju lake, Hoengseong lake and Doam lake was lake-type lake. The Paldang lake was a eutrophic lake, zooplankton community density and species number were the most among the five lakes. Relative dominance of the rotifera was the largest and the yearly first dominant species was a small cladocera Bosmina longirostris. The Cheongpyeong lake was a mesotrophic-eutrophic lake, hydraulic characteristics and zooplankton community changes were similar the Paldang lake. Relative dominance of the cladocera was the largest and the yearly first dominant species was a small cladocera Bosmina longirostris. The Chungju lake was a oligotrophic-mesotrophic lake, zooplankton community density was the least among the five lakes. Relative dominance of the copepoda was the largest and the yearly first dominant species was a large cladocera Daphnia galeata. The Hoengseong lake was a oligotrophic-mesotrophic lake, relative dominance of the rotifera was the largest and the yearly first dominant species was a small cladocera Bosmina longirostris. The Doam lake was a mesotrophic-eutrophic lake, zooplankton community density showed dramatic difference at the investigation time. Relative dominance of the rotifera was the largest and the yearly first dominant species was the copepoda Nauplius.
Keywords
Lake-type lake; River-type lake; Trophic state; Zooplankton;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 공동수, 윤일병, 류재근(1996). 팔당호의 물수지 및 수문특성. 한국육수학회지, 29, pp. 51-64.
2 김종민, 노혜란, 허성남, 양희정, 박준대(2005). 강우 및 유입 하천수가 팔당호 수질에 미치는 영향분석. 수질보전 한국물환경학회지, 21(3), pp. 277-283.
3 김종민, 허성남, 노혜란, 양희정, 한명수(2003). 호소형 및 하천형 댐 호의 육수학적 특성과 조류발생과의 상관관계. 한국육수학회지, 36(2), pp. 124-138.   과학기술학회마을
4 국가수자원관리종합정보시스템(2008). http://www.wamis.go.kr/.
5 엄성화, 황순진(2006). 팔당호 생태계에서 동물플랑크톤과 식물 플랑크톤의 섭식관계. 한국육수학회지, 39(3), pp. 390-401.   과학기술학회마을
6 유경아, 박혜경, 변명섭, 전남희, 최명재, 윤석환, 공동수(2007). 팔당호에서 인공 수초재배섬 설치에 따른 동물플랑크톤 군집 변화. 수질보전 한국물환경학회지, 23(3), pp. 339-347.
7 윤석제, 박혜경, 신경애(2010). 한강수계 주요 인공댐호의 식물플랑크톤 군집 동태, 수질보전 한국물환경학회지, 26(2), pp. 317-325.
8 한강물환경연구소(2004). 수중생태계 물질순환 및 에너지 흐름 조사 (I). 한강수계관리위원회.
9 한강물환경연구소(2005). 수중생태계 물질순환 및 에너지 흐름 조사 (II). 한강수계관리위원회.
10 한강물환경연구소(2006). 수중생태계 물질순환 및 에너지 흐름 조사 (III). 한강수계관리위원회.
11 한강물환경연구소(2009). 수계별 호소환경 및 생태조사 (I). 한강수계관리위원회.
12 환경부(2004). 수질오염공정시험법.
13 한국수력원자력(주)(2008). http://www.khnp.co.kr/.
14 Andersen, A. and Hessen, D. O. (1991). Carbon, nitrogen, and phosphorus contents of freshwater zooplankton. Limnol. Oceanogr., 36, pp. 807-814.   DOI   ScienceOn
15 Anon. (1982). Eutrophication of waters. Monitoring. assessment and control. Organisation for economic cooperation and development. Paris.
16 Asaeda, T. and Acharya, K. (2000). Application of individual growth and population models of Daphnia pulex to Daphnia marna. Daphnia galeata and Bosmina longirostris. Hydrobiologia. 421, pp. 141-155.   DOI   ScienceOn
17 Culver, D. A., Boucherle, M. M., Bean, D. J., and Flethcer. J. W. (1985). Biomass of freshwater crustacean zooplankton from Length-Weight regressions. Can. J. Fish. Aquat. Sci., 42, pp. 1380-1390.   DOI
18 Downing, J. A. and Rigler, F. H. R. (1984). A Manual an Methods for Assessment of Secondary Productivity in Freshwaters, Blackwell Scientific Publications.
19 Dumont, H. J., Velde, L. V. De., and Dumont, S. (1975). The dry weight estimate of biomass in a selection of Cladocera, Copepoda, and Rotifera from the plankton, periphyton, and benthos of continental waters. Oecologia, 91, pp. 75-97.
20 Edmondson, W. T. and Litt, A. H. (1982). Daphnia in Lake Washington. Limnol. Oceanogr., 27, pp. 272-293.   DOI   ScienceOn
21 Gilbert, J. J. and Stemberger, R. S. (1985). Control of Keratella populations by interference competition from Daphnia. Limnol. Oceanogr., 30, pp. 180-188.   DOI   ScienceOn
22 Greenberg, A. E., Clesceri, L. S., and Eaton, A. N. (1992). Standard Methods for the examination of Water and Wasrewater, 18st ed., APHA AWWA WEF, Washington.
23 Hall, D. T., Threlkeld, S. T., Burns, C. W., and Crowley, P. H. (1976). The size-efficiency hypothesis and the size structure of zooplankton communities, Annual Review of Ecology and Systematics, 7, pp. 177-208.   DOI   ScienceOn
24 Heath, R. T., Hwang, S. J., and Munawar, M. (2003). A hypothesis for the assessment of the importance of microbial food web: Linkages in nearshore and offshore habitats of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management, 6(3), pp. 231-239.   DOI   ScienceOn
25 Hwang, S. J., Kim, H. S., Shin, J. K., and Oh, J. M. (2004). Grazing effects of a freshwater bivalve (Corbiclua leana Prime) and large zooplankton on phytoplanton communities in two Korean lakes. Hydrobiol., 515, pp. 161-179.
26 Keckeis, S., Baranyi, C., Hein, T., Holarek, C., Riedler, P., and Schiemer, F. (2003). The significance of zooplankton grazing in a floodplain system of the: River Danube. J. Plankton Res., 25, pp. 243-253.   DOI
27 Kerfoot, W. C. and Sih, A. (1987). Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hanover and London. pp. 386.
28 Kim, H. W. and Joo, G. J. (2000). The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River(Korea). Hydrobiol., 438, pp. 171-184.   DOI   ScienceOn
29 Lampert, W. and Sommer, U. (1993). Thieme Verlag, Limnookologie, Stuttgart.
30 McNaughton, S. J. (1967). Relationship among functional properties of california glassland. Nature, 216, pp. 168-144.
31 OECD (1982). Eutrophication of water Monitoring Assessment and Control, OECD, Paris.
32 Pace, M. L. and Orcutt, J. D. (1981). The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol. Oceonogr., 26(5), pp. 822-830.   DOI   ScienceOn
33 Pielou, E. C. (1966). Shannon's formula as a measure of specific diversity: its use and misuse. Amer . Nat., 100, pp. 463-465.   DOI   ScienceOn
34 Rettig, J. E. (2003). Zooplankton responses to predation by larval bluegill: an enclosure experiment. Freshwater Biol., 48, pp. 636-648.   DOI   ScienceOn
35 Reynolds, C. S. (1994). The ecological basis for the successful biomanipulation of aquatic communities. Arch. Hydrobiol., 139, pp. 1-33.
36 Shannon, E. R. and Wiener, W. (1963). The mathematical theory of communication. Univ. Illinois Press, Urbana, pp. 125.
37 Sommer, U., Gliwicz, Z. M., Lampert, W., and Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol, 106, pp. 433-471.
38 Tallberg, P., Horppila, J., vaisanen. A., and Nurminen, L. (1999). Seasonal succession of phytoplankton and zooplankton along a trophic gradient in a eutrophic lake - implications for food web management. Hydrobiologia, 412, pp. 81-94.   DOI