• Title/Summary/Keyword: Special boundary

Search Result 353, Processing Time 0.029 seconds

Estimation of Maximum Inundation Zone due to Tsunamis with Moving Boundary (이동경계를 이용한 지진해일의 최대범람구역 추산)

  • 조용식;서승원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.100-108
    • /
    • 2001
  • Along the shoreline a special treatment is required to simulate movement of periodic waves such as tsunami and tide because of continuous movement of shoreline as waves rise and recede. A moving boundary treatment is first proposed to track the movement of shoreline in this study. The treatment is then employed to obtain a maximum inundation area to be used for mitigation of coastal flooding. The obtained maximum inundation zone for a specific location is compared to that of available observed data. A reasonable agreement is observed.

  • PDF

Wave Boundary Layer: Parameterization Technique and Its Proof

  • Belevich, M.;Safray, A.;Lee, Kwi-Joo;Kim, Kyoung-Hwa
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.29-39
    • /
    • 2002
  • A general investifation into the physical mechanism that is respinsible for drag above the sea surface has been undertaken. On the basis of a ID model of the Wave Boundary Layer(WBL), under a 2D wave field, a parameterization technique for estimation of the drag and mean characteristics of WBL is described. Special attention is paid to estimation of the simplifying assumption of the theory.

  • PDF

A Study on the Enhancement of the Solution Accuracy of Meshless Particle Method (무요소절점법의 수치해 정도 향상을 위한 연구)

  • 이상호;김상효;강용규;박철원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.3-10
    • /
    • 1997
  • Meshless particle method is a numerical technique which does not use the concept of element. This method can easily handle special engineering problems which cause difficulty in the use of finite element method, however it has a drawback that essential boundary condition is not satisfied. In this paper, several studies for satisfying essential boundary conditions and enhancing the accuracy of solutions are discussed. Particular emphasis is placed on a new numerical technique in which finite elements are used on the boundaries to satisfy the essential boundary conditions and meshless particle method is used in the interior domain. For coupling of the two methods interface elements are introduced into the zone between the subdomains using meshless particle method and finite element method. The shape functions and the approximated displacement functions of the interface element are derived with the ramp function based on the shape function of finite elements. The whole numerical procedures are formulated by Galerkin method. Several numerical examples for enhancing the accuracy of solution in the meshless particle method and a new coupling method are presented.

  • PDF

SIGNATURAL APPLICATIONS OF THE FRICKE GROUP ΓF (N)

  • Buyukkaragoz, Aziz;Unluyol, Erdal
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.296-309
    • /
    • 2022
  • In this paper, we establish the Fricke Group ΓF (N) which is a new special group of Non-Euclidean Crystallograhic (NEC) group. We obtain this group whose congruence subgroup Γ0(N) is expanded with Fricke reflection $F(z)={\frac{1}{N{\bar{z}}}}$. Then, we research and calculate the structure of signature and fundamental domain of this group. And then, we calculate the number of boundary components in the signature for this group. Finally, we find the 2, 3, ∞ valued link periods of these boundary components with the H. Jaffee technique.

QUALITATIVE ANALYSIS FOR FRACTIONAL-ORDER NONLOCAL INTEGRAL-MULTIPOINT SYSTEMS VIA A GENERALIZED HILFER OPERATOR

  • Mohammed N. Alkord;Sadikali L. Shaikh;Saleh S. Redhwan;Mohammed S. Abdo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.537-555
    • /
    • 2023
  • In this paper, we consider two types of fractional boundary value problems, one of them is an implicit type and the other will be an integro-differential type with nonlocal integral multi-point boundary conditions in the frame of generalized Hilfer fractional derivatives. The existence and uniqueness results are acquired by applying Krasnoselskii's and Banach's fixed point theorems. Some various numerical examples are provided to illustrate and validate our results. Moreover, we get some results in the literature as a special case of our current results.

A COLLOCATION METHOD FOR BIHARMONIC EQUATION

  • Chung, Seiyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.153-164
    • /
    • 1996
  • An $O(h^4)$ cubic spline collocation method for biharmonic equation with a special boundary conditions is formulated and a fast direct method is proposed for the linear system arising when the cubic spline collocation method is employed. This method requires $O(N^2\;{\log}\;N)$ arithmatic operations over an $N{\times}N$ uniform partition.

  • PDF

Necessary Conditions of Optimal Distributed Parameter Control Systems (분포정수계통의 최적제어 필요조건)

  • Kyung Gap Yang
    • 전기의세계
    • /
    • v.19 no.2
    • /
    • pp.21-23
    • /
    • 1970
  • Necessary conditions of optimal distributed parameter control systems, Hamiltons coanonical equations, welerstress condition, transversality condition and boundary condition are obtained, when the control function is constrained and the performance index takes on the general form. Also it is concluded that the lumped parameter system is the special case of the distributed parameter system.

  • PDF

ASYMPTOTIC VALUES OF MEROMORHPIC FUNCTIONS WITHOUT KOEBE ARCS

  • Choi, Un-Haing
    • The Pure and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.111-113
    • /
    • 1997
  • A simple proof for the special case of the McMillan and Pommerenke Theorem on the asymptotic values of meromorphic functions without Koebe arcs is derived from the author's result on the boundary behavior of meromorphic functions without Koebe arcs.

  • PDF

Dynamical Instability of Interfaces

  • Saka, H.;Tsukimoto, S.;Sasaki, K.
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.9-17
    • /
    • 2006
  • An interface and a grain boundary in the solid state can be quite unstable and vibrate violently under special circumstances. Two examples of such a vibration, as observed by in-situ transmission electron microscopy, were presented.

Dynamic Modeling Method for Beams Undergoing Overall Rigid Body Motion Considering Two Geometric Non-linear Effects (두 기하학적 비선형 효과들을 고려한 대변위 강체운동을 하는 보의 동적 모델링 방법)

  • Kim, Na-Eun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1014-1019
    • /
    • 2003
  • A dynamic modeling method for beams undergoing overall rigid body motion is presented in this paper. Two special deformation variables are introduced to represent the stretching and the curvature and are approximated by the assumed mode method. Geometric constraint equations that relate the two special deformation variables and the cartesian deformation variables are incorporated into the modeling method. By using the special deformation variables, all natural as well as geometric boundary conditions can be satisfied. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response when overall rigid body motion is involved.