Wave Boundary Layer: Parameterization Technique and Its Proof

  • Belevich, M. (Wave Research Center, General Physics Institute, Russian Academy of Sciences) ;
  • Safray, A. (Wave Research Center, General Physics Institute, Russian Academy of Sciences) ;
  • Lee, Kwi-Joo (Department of Naval Architecture and Ocean Engineering, Chosun University) ;
  • Kim, Kyoung-Hwa (Department of Naval Architecture and Ocean Engineering, Chosun University)
  • Published : 2002.12.01

Abstract

A general investifation into the physical mechanism that is respinsible for drag above the sea surface has been undertaken. On the basis of a ID model of the Wave Boundary Layer(WBL), under a 2D wave field, a parameterization technique for estimation of the drag and mean characteristics of WBL is described. Special attention is paid to estimation of the simplifying assumption of the theory.

Keywords

References

  1. Izv. Atmos. Ocean. Phys. v.32 On the Influence of Thermal Stratification on the Structure of the Wave Boundary Layer Belevich, M.
  2. Izv. Atmos. Ocean. Phys. v.34 On the Approximation of the Wind-Wave Interaction Parameter Belevich, M.;Neelov, I.
  3. Meteorologiya i Gidrologiya no.1 Evaluation of the Mutual Influence of the Wind-Wave Components on the Energy Interchange with the Wave Boundary Layer Belevich, M.;Neelov, I.
  4. J. Phys. Oceanogr. v.23 Boundary-Layer Model Results for Wind-Sea Growth Burgers, G.;Makin V.
  5. Bound. Layer Meteorol. v.63 One-dimensional Theory of the Wave Boundary Layer Chalikov, D.;Belevich, M.
  6. Phil. Trans. Roy. Soc. London v.A315 Directional Spectra of Wind-Generated Waves Donelan, M.A.;Hamilton, J.;Hui, W.H.
  7. Dtsch. Hydr. Z. Bd. v.A8 no.12 Measurements of Wind-Wave Growth and Swell Decay During the Joint Sea Wave Project (JONSWAP) Hasselmann, K.;Barnett, T.P.;Bouws, E.;Carlson, H.;Cartwright, D.E.;Enke, K.;Ewing, J.A.;Gienapp, H.;Hasselmann, D.E.;Kruseman, P.;Meerburg, P.;Muller, Olbers, D.J.;Richter, K.;Sell, W.;Walden, H.
  8. J. Phys. Oceanogr v.10 Directional Wave Spectra Observed During JONSWAP Hasselmann, D.E.;Dunckel, M.;Ewing, J.A.
  9. Okeanologiya v.ⅩⅩⅢ On the Wind Energy Transfer to Surface Gravity Waves Makin, V.K.
  10. Izv. Atmos. Ocean. Phys. v.22 Calculation of Momentum and Energy Fluxes going to Developing Waves Makin, V.;Chalikov, D.
  11. Bound. Layer Meteorol. v.79 Impact of Waves on Air-Sea Exchange of Sensible Heat and Momentum Makin, V.K.;Mastenbroek, C.
  12. Statistical Fluid Mechanics v.1 Monin, A.S.;Yaglom, A.M.
  13. J. Geophys. Res. v.69 no.24 A Proposed Spectral Form for Fully-Developed Wind Seas Based on the Similarity Theory of S.A. Kitaigorodskii Pierson, W.J.;Moskovitz, L.
  14. J. Geophys. Res. v.87 Between Wind Stress and Wave Slope Plant, W.J.;Relationship, A.
  15. J. Phys. Oceanogr. v.18 The WAM Model - A Third Generation Ocean Wave Prediction Model WAMD Group;Hasselmann, S.;Greenwood, J.A.;Reistad, M.;Zambresky, L.;Ewing J.A.
  16. Research Problems and Mathematical Modeling of the Wind Waves Joint Adaptive Model of the Nearwater Wind and Wind Waves Zaslavsky, M.M.;Kabatchenko, I.M.;Matushevsky, G.V.;Davidan, I.N.(ed.)
  17. Izv. Atmos. Ocean. Phys. v.4 Determination of Universal Profiles of Wind and Temperature in the Near-Earth Atmospheric Layer Zilitinkevich, S.S.;Chalikov, D.V.