• Title/Summary/Keyword: Spatial learning

Search Result 841, Processing Time 0.024 seconds

Deep Learning-based Super Resolution Method Using Combination of Channel Attention and Spatial Attention (채널 강조와 공간 강조의 결합을 이용한 딥 러닝 기반의 초해상도 방법)

  • Lee, Dong-Woo;Lee, Sang-Hun;Han, Hyun Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.15-22
    • /
    • 2020
  • In this paper, we proposed a deep learning based super-resolution method that combines Channel Attention and Spatial Attention feature enhancement methods. It is important to restore high-frequency components, such as texture and features, that have large changes in surrounding pixels during super-resolution processing. We proposed a super-resolution method using feature enhancement that combines Channel Attention and Spatial Attention. The existing CNN (Convolutional Neural Network) based super-resolution method has difficulty in deep network learning and lacks emphasis on high frequency components, resulting in blurry contours and distortion. In order to solve the problem, we used an emphasis block that combines Channel Attention and Spatial Attention to which Skip Connection was applied, and a Residual Block. The emphasized feature map extracted by the method was extended through Sub-pixel Convolution to obtain the super resolution. As a result, about PSNR improved by 5%, SSIM improved by 3% compared with the conventional SRCNN, and by comparison with VDSR, about PSNR improved by 2% and SSIM improved by 1%.

An Enhancement Method of Document Restoration Capability using Encryption and DnCNN (암호화와 DnCNN을 활용한 문서 복원능력 향상에 관한 연구)

  • Jang, Hyun-Hee;Ha, Sung-Jae;Cho, Gi-Hwan
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.79-84
    • /
    • 2022
  • This paper presents an enhancement method of document restoration capability which is robust for security, loss, and contamination, It is based on two methods, that is, encryption and DnCNN(DeNoise Convolution Neural Network). In order to implement this encryption method, a mathematical model is applied as a spatial frequency transfer function used in optics of 2D image information. Then a method is proposed with optical interference patterns as encryption using spatial frequency transfer functions and using mathematical variables of spatial frequency transfer functions as ciphers. In addition, by applying the DnCNN method which is bsed on deep learning technique, the restoration capability is enhanced by removing noise. With an experimental evaluation, with 65% information loss, by applying Pre-Training DnCNN Deep Learning, the peak signal-to-noise ratio (PSNR) shows 11% or more superior in compared to that of the spatial frequency transfer function only. In addition, it is confirmed that the characteristic of CC(Correlation Coefficient) is enhanced by 16% or more.

A Study on Augmented Reality-based Positioning Service Using Machine Learning (머신 러닝을 이용한 증강현실 기반 측위 서비스에 관한 연구)

  • Yoon, Chang-Pyo;Lee, Hae-Jun;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.313-315
    • /
    • 2017
  • Recently, application fields using machine learning have been widely expanded. In addition to the spread of smart devices, application services using location-based services are also in demand. However, it is difficult to provide the application service through the positioning in the indoor environment such as the specific space where the disaster situation where the information for positioning can not be collected and the actual location location information can not be used. In this situation, using the spatial information composed of the marker information and the markers of the neighbor registered in the augmented reality environment, positioning at a specific situation or position becomes possible. At this time, it is possible to learn the operation that makes the configuration of the marker-based spatial information correspond to the actual position through the machine learning, and the optimal positioning result can be obtained by minimizing the error. In this paper, we study the positioning methods required in specific situations using machine learning for learning of augmented reality markers and spatial information.

  • PDF

Assessing Korean Middle School Students' Spatial Ability: The Relationship with Mathematics, Gender, and Grade

  • Park, Sung Sun;Yoon, So Yoon
    • Research in Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.91-106
    • /
    • 2012
  • Spatial ability has been valued as a talent domain and important skill in mathematics education because it enhanced an intuitive view and an understanding in many areas of mathematic. In addition, spatial ability highly correlates with mathematics achievement, indicating its crucial role in success in mathematics education. Some researchers founded gender differences in mathematics and spatial ability, and indicated that spatial ability served as a mediator of gender difference in mathematics. This study explored the spatial ability of 349 Korean middle school students (Grade 7-9), and investigated the association among students' spatial ability and their mathematics achievement, gender, and grade. The result of this study shows that spatial ability correlates positively with mathematics achievement. While gender difference did not exist in mathematics, significant gender difference existed in spatial ability favoring male students.

Effects of Chongmyung-tang on Learning and Memory Performances in Mice

  • Lee, Seoung-Hee;Chang, Gyu-Tae;Kim, Jang-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.471-476
    • /
    • 2006
  • Chongmyung-tang(CMT, 聰明湯), oriental herbal medicine which consists of Polygaglae Radix(遠志), Acori Graminei Rhizoma(石菖蒲) and Hoelen(白茯神) has effect on amnesia, dementia. In order to evaluate effect of CMT on memory and learning in mice, CMT extract was used for studies. This paper describes the effects of CMT extract on memory and learning processes by using the passive and active avoidance performance tests, novel object recognition task and water maze task. The CMT extract ameliorated the memory retrieval deficit induced by ethanol in the passive avoidance responses but did not affect ambulatory activity of normal mice. These results suggest that CMT has an ameliorating effect on memory retrieval impairment. CMT extract decreased spontaneous motor activity(SMA) in the latter sessions of memory registration in active avoidance responses. These results suggest that CMT has partly transquilizing or antianxiety effects. In novel object recognition task to measure visual recognition memory, CMT-administered mice enhanced in long term memory for 1-3 days. In water maze task to measure spatial learning, which requires the activation of NMDA receptors in the hippocampus, spatial learning in CMT-administered mice was faster than in wild-type mice. These results suggest that CMT enhances memory and activates NMDA receptors.

The development and application of SMART Teaching-Learning Program about the unit of 'Earth and Moon' in the 5th grade of elementary school (초등학교 5학년 '지구와 달' 단원의 스마트 교수 학습 프로그램 개발 및 적용)

  • Han, Shin;Jeong, Jinwoo;Jeong, Sophia
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.1
    • /
    • pp.76-86
    • /
    • 2015
  • The purpose of this study is to take advantage of the smart teaching - learning programs about the unit of 'Earth and Moon' and find out how to apply the effect appears. Teaching-Learning program was conducted over eight lessons. And we analyzed the effect of the program at any time through the evaluation and interview. The results are as follows. First, this study proposed a method to assist in the teaching and learning of spatial ability for students' movement of the Earth and the Moon. The program takes advantage of N-Screen Applications were configured to allow both Earth observation insider perspective and the external multilateral perspective. This improves students' understanding qualitatively. Second, we applied the teaching and learning programs utilizing smart smart devices, and the result was a lot of low rank students' average score rises. In addition, we were able to see that many students' understanding and interest, self-confidence are improved.

A supervised-learning-based spatial performance prediction framework for heterogeneous communication networks

  • Mukherjee, Shubhabrata;Choi, Taesang;Islam, Md Tajul;Choi, Baek-Young;Beard, Cory;Won, Seuck Ho;Song, Sejun
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.686-699
    • /
    • 2020
  • In this paper, we propose a supervised-learning-based spatial performance prediction (SLPP) framework for next-generation heterogeneous communication networks (HCNs). Adaptive asset placement, dynamic resource allocation, and load balancing are critical network functions in an HCN to ensure seamless network management and enhance service quality. Although many existing systems use measurement data to react to network performance changes, it is highly beneficial to perform accurate performance prediction for different systems to support various network functions. Recent advancements in complex statistical algorithms and computational efficiency have made machine-learning ubiquitous for accurate data-based prediction. A robust network performance prediction framework for optimizing performance and resource utilization through a linear discriminant analysis-based prediction approach has been proposed in this paper. Comparison results with different machine-learning techniques on real-world data demonstrate that SLPP provides superior accuracy and computational efficiency for both stationary and mobile user conditions.

Prediction of Static and Dynamic Behavior of Truss Structures Using Deep Learning (딥러닝을 이용한 트러스 구조물의 정적 및 동적 거동 예측)

  • Sim, Eun-A;Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.69-80
    • /
    • 2018
  • In this study, an algorithm applying deep learning to the truss structures was proposed. Deep learning is a method of raising the accuracy of machine learning by creating a neural networks in a computer. Neural networks consist of input layers, hidden layers and output layers. Numerous studies have focused on the introduction of neural networks and performed under limited examples and conditions, but this study focused on two- and three-dimensional truss structures to prove the effectiveness of algorithms. and the training phase was divided into training model based on the dataset size and epochs. At these case, a specific data value was selected and the error rate was shown by comparing the actual data value with the predicted value, and the error rate decreases as the data set and the number of hidden layers increases. In consequence, it showed that it is possible to predict the result quickly and accurately without using a numerical analysis program when applying the deep learning technique to the field of structural analysis.

Optimal Design of Semi-Active Mid-Story Isolation System using Supervised Learning and Reinforcement Learning (지도학습과 강화학습을 이용한 준능동 중간층면진시스템의 최적설계)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.73-80
    • /
    • 2021
  • A mid-story isolation system was proposed for seismic response reduction of high-rise buildings and presented good control performance. Control performance of a mid-story isolation system was enhanced by introducing semi-active control devices into isolation systems. Seismic response reduction capacity of a semi-active mid-story isolation system mainly depends on effect of control algorithm. AI(Artificial Intelligence)-based control algorithm was developed for control of a semi-active mid-story isolation system in this study. For this research, an practical structure of Shiodome Sumitomo building in Japan which has a mid-story isolation system was used as an example structure. An MR (magnetorheological) damper was used to make a semi-active mid-story isolation system in example model. In numerical simulation, seismic response prediction model was generated by one of supervised learning model, i.e. an RNN (Recurrent Neural Network). Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm The numerical simulation results presented that the DQN algorithm can effectively control a semi-active mid-story isolation system resulting in successful reduction of seismic responses.

Reward Design of Reinforcement Learning for Development of Smart Control Algorithm (스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계)

  • Kim, Hyun-Su;Yoon, Ki-Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.