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1 |  INTRODUCTION

Future wireless communication networks are expected to 
support rapidly growing mobile data with huge numbers of 
complex Internet of things (IoT) applications, which require 
high data rates, complete coverage, and a thousand-fold ca-
pacity increase. For example, it is predicted that the total 
number of Internet users will be more than 5 billion, with 
almost 30 billion devices connected worldwide, by 2023 [1]. 
More than 70% of the global population will be connected 
and mobile and Wi-Fi network speeds will triple by 2023 [1]. 
These incremental networks will generate a massive amount 
of network traffic; Cisco predicted the generation of 3.3 ZB 

of traffic per year by 2021 [2]. Almost 53% of total network 
traffic was generated by mobile users in 2019. This ratio is 
likely to increase in the future [3]. Therefore, it is necessary 
to ensure the continuity of reliable and secure network ser-
vices for heterogeneous mobile IoT devices.

Although traditional terrestrial networks can provide 
high-speed data services, non-terrestrial systems, such as sat-
ellites and the Loon network, may support extended cover-
age to otherwise unreachable areas. However, any individual 
system cannot achieve ubiquitous communication coverage 
and service continuity [4]. Therefore, as shown in Figure 1, 
we believe that heterogeneous communication networks 
(HCNs), including the emerging sixth-generation (6G) and 
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Loon wireless systems, terrestrial mobile and wireless net-
works, satellites, IoT, Wi-Fi, and Bluetooth, are crucial for 
meeting the challenges facing future mobile communications 
[5–7]. Using various terrestrial and non-terrestrial systems 
in parallel requires more than the simple combination of 
systems because different systems employ different protocol 
standards, data formats, and access technologies. Different 
network resources are expected to cooperate to support more 
efficient data transmission and provide more reliable ser-
vices. However, current network architectures cannot effi-
ciently exploit all the benefits of HCNs

In this paper, we propose a novel supervised-learn-
ing-based spatial performance prediction (SLPP) framework 
for next-generation HCNs that improves network perfor-
mance, ensures seamless network management, and enhances 
service quality. To support the critical network functions of 
HCNs, including adaptive asset placement, dynamic resource 
allocation, and load balancing, it is highly beneficial to har-
ness accurate performance prediction methods for different 
systems. Unlike many existing systems that use measure-
ment data to react to network performance changes, SLPP 
proactively improves network performance, automates net-
work optimization and management, and reduces operational 
costs and energy consumption [9,10]. SLPP can be used to 
determine the type of wireless network (cellular, Wi-Fi, sat-
ellite) in an appropriate location that is suitable for a spe-
cific application at a particular time. For example, if there 
are mission-critical communications occurring, which must 
satisfy ultra-reliable low-latency communication (URLLC) 
requirements, the SLPP model can anticipate which network 
can meet these requirements [11]. Additionally, in a secure 
virtual private network application, the proposed prediction 
framework can accurately predict which system can provide 
the maximum data security [12,13].

SLPP harnesses a robust network performance predic-
tion framework for optimizing performance and enhancing 
the resource utilization of various HCN systems by taking 
advantage of recent improvements in both machine-learning 
and statistical learning methods. Specifically, SLPP defines a 

novel machine-learning-based performance prediction model 
for HCNs for both terrestrial and non-terrestrial networks, 
using previous data as a training dataset to predict the perfor-
mance of a network.

As illustrated in Figure 2, the SLPP framework is added 
as an artificial intelligence (AI) layer on top of a traditional 
communication network structure, which contains the infra-
structure and management layers. The infrastructure layer in-
cludes user equipment (UE), radio access nodes, core nodes, 
and network clouds, which interface to process control sig-
nals and user data. The management layer provides various 
essential network operations and management functions, in-
cluding fault management, configuration management, and 
performance administration. These two functional represen-
tations are valid for any legacy communication network, such 
as 4G, 5G, or Wi-Fi, as well as any advanced and sophisti-
cated network scenarios, such as HCNs or 6G.

The proposed SLPP framework represents an attempt to 
define machine-learning-based automation's role in the con-
text of next-generation communication networks, where ma-
chine-learning-based automation is the key to orchestrating 
all network management functionalities efficiently according 
to [14,15]. As shown in Figure 2, the AI layer above the man-
agement layer supports various intelligent network functions 
by automating network management processes. The primary 
AI layer functionality includes event-based classification, 
such as automated root cause analysis (RCA), management 
of network faults, key performance indicators (KPIs), degra-
dation prediction for preventive maintenance, and proactive 
fault recovery. The spatial performance prediction service 
function advocates service- and capacity-based network plan-
ning. Additionally, the SLPP supports reliability prediction 
for the performance- and capacity-based load balancing of 
HCNs. The AI layer maintains bi-directional information 
flows with the management layer. Therefore, the management 
layer periodically receives accurately predicted information 
regarding various types of network performance information, 
such as latency and signal level reliability, from the AI layer, 
allowing it to maintain optimal network performance in terms 
of faults, configurations, and performance management ser-
vices. Using the SLPP framework, it is possible to determine 
which networks provide the best performance. According 
to these performance results, the SLPP can ensure optimal 
network resource (bandwidth and power) embedding. By em-
ploying the proposed model, network operators can perform 
service reliability prediction for efficient resource provision-
ing, preventive network maintenance, and the prompt deploy-
ment of alternative networks (including fast RCA) during 
natural disasters. SLPP can eliminate the requirements of tra-
ditional drive testing, which requires a substantial workforce 
and valuable network resources. SLPP can also be useful as a 
critical design algorithm for performance- and capacity-based 
load balancing for heterogeneous network environments. A 

F I G U R E  1  Co-existence of a terrestrial and non-terrestrial 
heterogeneous network [8]
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performance prediction framework can also be realized by 
constructing an event-based classification system for auto-
mated RCA management and KPI degradation prediction. We 
present the detailed procedure for a performance prediction 
scenario, where we predict the signal level of a long-term evo-
lution (LTE) network based on historical performance data. 
However, we attempt to emphasize the detailed descriptions 
of algorithm- and real-data collection-based approaches, sim-
ilar to [16,17], in contrast to the comprehensive system-level 
illustrations presented in [18] because of the unavailability of 
a complete industrial network architectural environment. We 
plan to overcome this limitation in future work by construct-
ing an open-source HCN simulation platform.

As a proof of concept for our methodology, we collected 
real-world LTE network data as training data for both sta-
tionary and mobile users. We leverage a linear discriminant 
analysis (LDA)-based classification algorithm for predicting 
the signal levels of an LTE network and present performance 
comparisons with other frequently used supervised and unsu-
pervised approaches, such as linear regression and K-means 
clustering. The main contributions of this paper can be sum-
marized as follows:

• We propose a comprehensive framework for multi-network 
multi-parameter prediction with process flows.

• We use real data from networks and other relevant perfor-
mance parameters that would facilitate faster product im-
plementation based on a proof of concept of our model.

• We present detailed descriptions of a methodical approach 
for solving issues related to working with practical raw 
data.

• We present performance comparisons with other popular 
machine-learning approaches in terms of accuracy and 
computational efficiency.

The remainder of this paper is organized as follows. 
Section 2 discusses the background of our research and related 
works. Section 3 discusses the detailed process flow for con-
structing a robust performance prediction system. Section 4 
describes our data collection methodology. Section  5 de-
scribes the challenges faced and the solutions used to con-
struct the proposed model. Section 6 describes the proposed 
LDA-based prediction model and Section 7 presents obtained 
experimental results. Finally, Section 8 summarizes the con-
clusions derived from our study on heterogeneous network 
performance prediction.

2 |  BACKGROUND AND RELATED 
WORK

One of the most ambitious projects created by Alphabet Inc.’s 
(Google's parent company) Google X laboratory is “Project 
Loon,” which aims to connect people everywhere and expand 
Internet access to the billions who currently lack access [19]. 
Loon uses a temporospatial software-defined network (SDN) 
that applies supervised and unsupervised machine learning 
to model time-dynamic wireless signal propagation [20]. 
However, the Loon SDN is only designed for homogeneous 
network conditions, primarily LTE, meaning a more gener-
alized approach is required to model current heterogeneous 
networks. Additionally, some recent studies have described 

F I G U R E  2  A supervised-learning-based spatial performance prediction (SLPP) framework
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prediction approaches to consider performance under both 
stationary and mobile conditions, which mainly pertain to 
cellular networks [9,21,22]. In a recent paper, the authors 
described a comprehensive framework for cellular perfor-
mance prediction. However, this work can be extended to 
construct a generic prediction model for heterogeneous net-
works [10]. In another paper, the authors discussed various 
deep-learning techniques for space—air–ground integrated 
network optimization [23]. Some relevant studies have used 
neural-network-based handover for multi-radio-access-tech-
nology (multi-RAT) networks, deep belief networks for traf-
fic flow prediction, and K-means clustering to enhance the 
results of network planning tools, but have not considered 
the relatively simple and efficient techniques of supervised 
machine learning [24–26]. Additionally, some researchers 
have used regression and other non-AI-based techniques to 
detect performance anomalies in cellular or WiMAX net-
works. However, the effects of performance degradation 
under stationary and mobile conditions have not been ex-
plicitly described [27,28]. Some researchers have also used 
supervised-learning techniques such as k-nearest neighbors 
for machine-learning-based handover in vehicular networks, 
which demonstrates the versatility of performance prediction 
for automating numerous network functions [29].

The authors of [30] proposed a supervised deep-learning-
based system for appropriate input and output characteriza-
tions of heterogeneous network traffic with multiple hidden 
layers to compute non-linear transformations of previous 
layers. They used a greedy layer-wise training method to ini-
tialize their deep-learning system and the back-propagation 
algorithm to fine tune the deep-learning process. Tang and 
others [31] proposed a novel deep-learning-based traffic load 
prediction algorithm to forecast future congestion in SDN--
IoT networks in combination with a partial channel assign-
ment algorithm to allocate channels to each link intelligently. 
The authors of [32] proposed a deep-reinforcement-learning 
approach to minimize prediction uncertainty for dynamic 
resource allocation. In [33], the authors used deep learn-
ing to optimize traffic and enable low-latency and reliable 
content caching for transmitting virtual reality content from 
unmanned aerial vehicles. The authors of [34] followed a 
specific reinforcement-learning-based approach called the 
“multi-armed bandit” approach to solve the challenge of han-
dover between macrocells and picocells. However, their work 
can be extended to optimize multi-RAT handover. Yu and 
others [35] also used a deep-reinforcement-learning-based 
medium access control protocol for heterogeneous wireless 
networking.

Most of the methods discussed above require significant 
data processing and are inefficient in terms of training and 
testing because they also require considerable amount of 
time for model deployment and learning. Additionally, rather 
than centralized model deployment, these methods use nodal 

analysis or implementation, which increases complexity 
and scalability issues. Accuracy and effectiveness are also 
concerns for such models because heterogeneous environ-
ments and networks exhibit data variation and feature dis-
similarity. Unlike the studies discussed above, we propose 
a framework for the optimal combination of supervised and 
unsupervised learning to maximize accuracy with minimal 
complexity. We consider both terrestrial and non-terrestrial 
networks for modeling our prediction algorithm instead of 
using only limited standards such as reliability and through-
put. Our model considers network security and availability as 
crucial parameters for predicting network performance and 
performing decision making. As a proof of concept, we con-
sider real-time raw network data for multiple user conditions 
and locations, which increases our model's generalizability 
and effectiveness.

3 |  PROCESS FLOW

We propose a performance-based prediction approach called 
“œspatial performance prediction” as the basis for an algo-
rithm to predict the performance of heterogeneous networks 
effectively. The detailed process flow for this approach is 
presented in Figure 3. In this approach, the system is initially 
trained using various network performance metrics, namely 
throughput, reliability, latency, current user statistics, and the 
deployed security schemes of multiple access networks, such 
as LTE, 5G, Wi-Fi, and satellite. Based on this initial training 
data, the system will generate a robust spatial performance 
map of the heterogeneous environment. Finally, with help 
from the predicted network model, the system can determine 
the load distribution paradigm for the overall heterogeneous 
network. Our system assumptions are based on the desire to 
handle end-to-end load balancing for any combination of ter-
restrial and non-terrestrial networks because we incorporate 
both types of networks. Because it is spatial in nature, our 
model leverages the advantages of prototyping a multi-access 
network for any combination of space and network types. 

F I G U R E  3  Network performance prediction process flow

Cellular 
performance

WiFi
performance

User statistics

Weather data

Security
scheme

Device 
reliability

Supervised
learning

Unsupervised 
learning

Time series 
analysis

Experimental 
techniques

Error 
estimation

Cross 
validation

Performance 
evaluationData 

collection Training
Testing

Bad

Good

NTN
performance



690 |   MUKHERJEE Et al.

Additionally, instead of simply using traditional performance 
metrics such as latency or throughput, our model includes 
security performance as a significant criterion for catego-
rizing network preferences. To the best of our knowledge, 
ours is the first model that accounts for security performance 
when ranking heterogeneous terrestrial and non-terrestrial 
networks.

4 |  DATA COLLECTION 
METHODOLOGY

We incorporated an Android application called “Network 
Cell Info” [36] to record network performance data in real 
time. The collected data include various heterogeneous net-
work environments (primarily UMTS, LTE, GSM, and Wi-
Fi). For our current prediction model, we focus on LTE data, 
where “T-Mobile” is considered as a cellular operator and 
the “One Plus 6” and “Samsung S5” devices are consid-
ered as user equipment. We accumulated performance data 
from various locations, such as residences, streets, universi-
ties, and airports, under both stationary and mobile condi-
tions. Our mobile condition data contain variations such as 
walking, travel via public transport, and travel via private 
vehicles, which represent the effects of numerous mobility 
conditions. Finally, we collected historical weather data for 
the target coverage locations from [37]. We recorded and 
accumulated a total of 34 network performance parameters 
and nine weather data parameters, namely temperature, dew 
point, humidity, wind direction, wind speed, wind gust, at-
mospheric pressure, precipitation, and weather conditions 
(cloudy, rainy, etc.). Table  1 lists some examples of these 
parameters. These 43 independent predictors serve as the pri-
mary source of data for predicting the performance of cellular 
(LTE, UMTS, and GSM) networks.

5 |  COLLINEARITY ISSUES OF 
PERFORMANCE DATA

We encountered a few challenges related to our raw collected 
data and had to perform multi-stage preprocessing prior to 
using them as inputs for the main prediction model. The pri-
mary issue is that the raw performance data exhibit the “mul-
ticollinearity” property. Multicollinearity or collinearity 
refers to a situation in which two or more predictor variables 
are closely related [38]. Collinearity reduces the accuracy of 
the estimates of fitting coefficients �̂ j, which leads to the mis-
calculation of standard error. The t-statistic for each predictor 
is calculated by dividing �̂ j by its standard error. Collinearity 
results in a decline in the t-statistic, which leads to the failure 
to reject the null hypothesis H0: �̂ j =0. The best way to identify 
multicollinearity is to compute the variance inflation factors 

(VIF) of data. The VIF is the ratio of the variance of �̂ j when 
fitting the full model divided by the variance of �̂ j when fit-
ting that variable alone. The smallest possible value for the 
VIF is one, which indicates the complete absence of colline-
arity. It has been observed that in practical cases, there is al-
most always a small amount of collinearity among predictors. 
As a rule of thumb, a VIF value that exceeds 10 indicates a 
problematic amount of collinearity. The VIF of each variable 
can be computed using (1), where R2

(Xj|X−j)
 is a coefficient of 

determination that is derived from the regression of Xj over 
all other predictors. If R2

(Xj|X−j)
 is close to one, we can con-

clude that collinearity is present and the VIF will be large.

In the first step of data preprocessing, we found that the 
data exhibit “perfect multicollinearity,” which refers to the 
condition when there is an exact linear relationship between 
two or more variables [38]. We can conclude that a set of 
variables is perfectly multicollinear if there are one or more 
exact linear relationships among any variables, which is sim-
ilar to (2), where X1i, X2i, . . . , Xki are the predictor variables 
and �0, �1, . . . , �k are the constants.

Perfect multicollinearity may be encountered frequently 
when handling raw datasets that contain redundant informa-
tion. To rectify the issue of perfect multicollinearity in our 
data, we performed linear regression between the predicted 
variables and all other predictors. We adopted an alias func-
tion to identify the variables responsible for perfect multicol-
linearity, as shown in (3).

(1)VIF(�̂ j)=
1

1−R2
(Xj|X−j)

.

(2)�0+�1X1i+�2X2i+⋯+�kXki =0.

T A B L E  1  Collected network data types and notations

Parameter Descriptions

Clid ECI for LTE, UCID for UMTS, CID for GSM

Acc Device location accuracy at the time of 
measurement

Bearing Device direction of travel at the time of 
measurement

Alt Device altitude at the time of measurement

rsrq LTE reference signal received quality (RSRQ)

rssnr LTE RSSNR (reference signal signal-to-noise 
ratio)

ta LTE TA (timing advance)

Ws Speed and direction of wind

Wg Sudden, brief increase in wind speed

Ppt Hourly precipitation measure
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We excluded the identified predictors from our dataset and 
rechecked to confirm that the perfect multicollinearity was 
eliminated from our data. We then performed Eigensystem 
analysis to identify any other predictors responsible for mul-
ticollinearity in our data by leveraging (4) and (5).

We derived the “condition number” and “Kappa” from (4) 
and (5). Both values were in the range of ~2 × 106, which 
indicates the presence of strong collinearity. If the condition 
number is above 30, it indicates that the regression contains 
severe multicollinearity [38]. We can also confirm multicol-
linearity if two or more of the variables are related to the 
high condition number with high levels of variance [10]. The 
condition number is computed by calculating the square root 
of the maximum eigenvalue divided by the minimum eigen-
value in the design matrix. This method identifies which vari-
ables are responsible for the multicollinearity problem. In the 
next step, we used the VIF to identify the variables respon-
sible for this collinearity, as shown in (6). We calculated the 
mean VIF using (6) and found a large value (~2 × 104 range). 
We acquired the VIFs for individual predictors to identify the 
predictors responsible for collinearity. Next, we recalculated 
the mean VIF and individual VIFs and removed the predic-
tors with VIF > 5. After removing the predictors responsible 
for collinearity, we determined that the condition number and 
Kappa value were less than 15 and that the mean VIF was 
reduced to the range of ~1.4. Therefore, we confirmed that 
our dataset was free from the collinearity problem and ready 
to use for our prediction model.

6 |  SPATIAL PERFORMANCE 
PREDICTION MODEL

We prepared our final prediction model based on 10 predic-
tors, which are listed in Table 1. We designed a classification 
model for the prediction of signal levels under station-
ary conditions and another similar classification model for 
mobile conditions. An LDA approach was used for signal 
level prediction. LDA is a supervised-learning approach for 
estimating the conditional distribution of the response Y  to 
given predictors X [39]. LDA represents the distributions of 
the predictors X separately in each of the response classes 
and then uses Bayes’ theorem according to (7) to estimate a 

conditional probability Pr(Y= k|X= x). If we wish to classify 
an observation into one of K classes, where K≥2, we de-
note fk(x)≡Pr(X= x|Y= k) as the density function of X for an 
observation that comes from the k-th class. We assume that 
in (7), X is a discrete random variable. If it is assumed that 
�2

1
=�2

2
=⋯=�2

k
, then there is a shared variance term across 

all K classes, which can be denoted as �2.

�k denotes the prior probability that an observation 
belongs to the k-th class, and �k and �2

k
 are the mean and 

variance of the k-th class, respectively. The LDA classifier 
assumes that the observations within each class come from 
a normal distribution with a class-specific mean vector and 
common variance �2

k
. When plugging estimates for these pa-

rameters into the Bayes’ classifier in (8), it is assumed that 
there is only one predictor (p=1). However, for the LDA 
analysis of more than one predictor (p>1), it is assumed that 
X= (X1, X2, . . . , Xp) is drawn from a multivariate Gaussian or 
multivariate normal distribution with a class-specific multi-
variate mean vector and common covariance matrix [39]. To 
indicate that a p-dimensional random variable X has a mul-
tivariate Gaussian distribution, we write X∼N(�,

∑
). Here, 

E(X)=� is the mean of X (a vector with p components) and 
Cov(X) = 

∑
 is the p × p covariance matrix of X. Finally, the 

multivariate Gaussian density and discriminant function are 
defined as shown in (9).

 

The Bayes’ classifier assigns an observation X= x to the 
class for which (8) is maximized. f(x) in (9) is the multivariate 
Gaussian density function and �k(x) in (10) is the discriminant 
function. Although (10) has a complex form, the discriminant 
function is linear, as indicated in (11). Therefore, this tech-
nique is called LDA.

Initially, based on the raw data, we performed data prepro-
cessing and rectified the multicollinearity issue as described 

(3)myfit= lm(sigl∼. , data= lte); alias(myfit).

(4)
max(eigen(cor(lte))$values)

min(eigen(cor(lte))$values)
,

(5)kappa(cor(lte), exact=TRUE).

(6)v=vif(myfit); sort(v); mean(v).

(7)Pr (Y= k�X= x)=
�kfk (x)

∑k

l=1
�lfl (x)

,

(8)pk(x)=

�k
1√
2��

exp
(x−�k)2

2�2

∑k

l=1
πl

1√
2��

exp
(x−�l)

2

2�2

.

(9)f(x)=
1

2�
p

2 �
∑

�
1

2

exp−
1

2
(x−�)T1−

�̂
(x−�),

(10)�k(x)= xT1−
∑̂

�T
k
−

1

2
�T

k
1−

∑̂
�k+ log�k.

(11)�k(x)=Ck0+CK1x1+CK2x2+ . . . +CKpxp.
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above. After applying LDA to the training data, we obtained 
a confusion matrix. This confusion matrix compares the LDA 
predictions to the true classes for the training observations 
in the dataset. Elements on the diagonal of the matrix rep-
resent samples whose signal levels are correctly predicted, 
while off-diagonal elements represent samples that are mis-
classified, as shown in Figure  4. In the next step, we con-
ducted a cross-validation procedure to calculate the actual 
test error. We used K-fold cross-validation for this purpose. 
This approach involves randomly dividing the set of obser-
vations into k groups or folds of approximately equal size. 
The first fold is treated as a validation set and the proposed 
method is fitted to the remaining k1 folds. Subsequently, the 
mean squared error MSE1 is computed for the observations 
in the held-out fold. This procedure is repeated k times. 
Each time, a different group of observations is treated as a 
validation set. This process results in k estimates of the test 
error MSE1, MSE2,⋯. MSEk. The K-fold cross-validation 
estimate is computed by averaging these values according to 
(12). We set K=10 for optimal validation.

Signal levels are denoted by the numbers 0, 1, 2, 3, and 4. 
In our experimental results, zero indicates that LTE coverage 
is absent, one is the weakest LTE signal level, and four is the 
strongest signal level. We obtained three signal levels of 2, 
3, and 4 for the stationary data and denoted them as Class 2, 
Class 3, and Class 4, respectively. For the mobile data, we 
observed signal levels of 1, 2, 3, and 4, and denoted them as 
Class 1, Class 2, Class 3, and Class 4, respectively.

7 |  PERFORMANCE EVALUATION

In this section, we evaluate SLPP in terms of accuracy, per-
formance stability, variation, and computational complexity 
for predicting the signal levels in under stationary and mobile 
conditions. We assess the most pertinent related approaches, 
including a Friis equation-based method, linear regression-
based approach, and K-means-clustering-based procedure. 

Such methods are commonly used for network performance 
prediction. Finally, we present comparative analysis results 
for all of the tested methods in Table 2. As shown in Table 2, 
SLPP performs prediction tasks with the highest accuracy, 
least computational complexity, best performance stability, 
and lowest mean variance inflation factor for both stationary 
and mobile conditions.

After solving the multicollinearity problem present in the 
raw data, we applied LDA to our data for performance predic-
tion. This is a supervised-learning-based approach. Based on 
the performance results, one can see that LDA is a stable and 
accurate classification model. The results in Figure 5 reveal that 
we can achieve an overall accuracy of 95% for predicting signal 
levels under stationary conditions and 90% under mobile condi-
tions by using LDA. Furthermore, it is observed that the overall 
condition number, or Kappa, is 0.5 for the stationary condition 
and 0.48 for the mobile condition. Additionally, the overall VIF 
is only 1.58 for stationary conditions and 1.33 for mobile con-
ditions. Overall, small values of both Kappa (0.5 for stationary 
and 0.48 for mobile) and the VIF (1.58 for stationary and 1.33 
for mobile) indicate that we were successful in eliminating the 
collinearity issue in the raw data.

We achieved this performance using only 10 predictors. As 
shown in Figure 6, after solving the multicollinearity issue, our 
mean VIF remains within the ranges of 1.4 to 1.8 for stationary 
conditions and 1.2 to 1.6 for mobile conditions. Our results re-
main steady with an increase in the sample size. Additionally, 
the condition number (Kappa) remains below one for both the 
stationary and mobile conditions, regardless of the sample size. 
The consistently insignificant values of kappa and the VIF indi-
cate that all of our data are free from collinearity for any num-
ber of samples and can be used to construct a stable prediction 
model. In Figure 7, one can see that the prediction accuracy 
of our method consistently remains between 94% and 96% for 
stationary conditions with varying sample sizes. Additionally, 
the prediction accuracy of our method consistently remains be-
tween 89% and 91% for mobile conditions. The consistent per-
formance of user signal level prediction for both the stationary 
and mobile conditions demonstrates the stability of the classi-
fication accuracy of our model for any sample size (Figure 8).

We reviewed some other relevant algorithms for per-
formance prediction for comparative analysis. We consid-
ered three types of methods: (i) Classical approaches (Friis 
equation-based methods), (ii) supervised-learning-based 
approaches (linear regression methods), and (iii) unsu-
pervised-learning-based approaches (K-means clustering 
methods).

7.1 | Friis equation-based classical methods

Received signal power can be calculated using the Friis for-
mula shown in (13), where Pr is the received signal power 

(12)CV(k) =
1

k

k∑

i= 1

MSEi.
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at a distance R, Pt is the transmitter antenna power, and Gt 
and Gr are the transmitter and receiver antenna gains, respec-
tively. The Friis' path loss in (13) is only valid for free space 
and it assumes that the receiving and transmitting antennas 
are isotropic. Therefore, the accuracy of this formula is ex-
tremely low for real-world scenarios.

A generalized form of the free-space Friis equation is pre-
sented in (14), where the received power (in dB) decreases at 
a rate of (1/d)n and d is the distance between the transmitter 
and receiver [40]. Here, n is a path loss exponent that can be 
used for a generalized environment without free space. X is 
a Gaussian random variable used to capture shadowing prob-
abilities defined in dB. Our model was constructed based on 
spatially distributed data, meaning (14) is not an appropri-
ate application method for our model because it assumes a 
Gaussian distribution.

We have considered signal level data in different envi-
ronments, including indoor and outdoor environments, with 
various mobility scenarios, such as stationary, slow-moving, 
and fast-moving vehicles. We also consolidated other envi-
ronmental values, including weather conditions (ie, Ws, Wg, 
and Ppt in Table 1). We also integrated fixed wireless channel 
models such as Gaussian distribution-based, pedestrian-only, 
and vehicle-only data models in heterogeneous network sce-
narios to predict perceived signal levels.

7.2 | Linear regression methods

We applied a linear regression method to our dataset and 
observed the resulting performance. Although the error 
performance (route mean square error or RMSE, the rela-
tive measure of the percentage of the dependent vari-
able variance or R2, and Mean absolute error or MAE) is 

(13)Pr =
PrGrGr�

2

(4�R)2
,

(14)Pr (d)=Pr

(
d0

)
−10n log

(
d

d0

)
+X; d>d0.
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stable for the mobile conditions when using regression, it 
varies significantly for stationary signal strength predic-
tion (particularly RMSE), as shown in Figure  9, which 
results in unreliable error performance for the prediction 
model. The main issue in the regression-based approach 
is non-constant variance. An important assumption of lin-
ear regression is that error terms have constant variance. 

Non-constant variation in data is known as heteroscedastic-
ity. The presence of heteroscedasticity in a model results 
in the erroneous estimation of standard error, R2 score, 
and hypothesis testing results. We performed two different 
tests to determine the variance in the data: the standard-
ized Breusch Pegan test and the non-constant variance test 
or Chi test, as shown in Figure 10. Both the standardized 
Breusch Pegan and non-constant variance test data reveal 
monotonic increases in variance for both the stationary and 
mobile conditions, resulting in strong heteroscedasticity 
that causes erratic overall prediction performance.

7.3 | K-means clustering

We selected K-means clustering as an unsupervised-learning 
approach and applied it to our data. This method provides 
a good overall cluster separation performance, as shown in 
Figure 11. Typically, the performance of a K-means model 

F I G U R E  6  SLPP multicolinearity 
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improves when additional initial centroids are considered, 
which allows a greater number of clustering models to run 
in parallel and consumes additional computation resources. 
From a computational perspective, K-means clustering is a 
function of n∗ k∗ l, where n is the sample size, k is the num-
ber of clusters, and l is the number of initial centroids. One 
can see that for a greater number of clusters (k≥2), achiev-
ing a better silhouette distance requires a greater number of 
initial centroids (l≥1). As shown in Figure 11, the best clus-
ter separation performance is achieved when the number of 
clusters is set to four (k=4) with five or more (l=5) initial 
centroids. Therefore, the complexity is 20(n).

K-means clustering performs poorly in terms of identify-
ing accurate signal levels. As shown in Figure  12, despite 
reasonable cluster separation performance, the accuracy 
of signal level prediction reaches a maximum of <40% for 
the stationary condition and <60% for the mobile condition 
when using the K-means clustering algorithm. Further, it is 

observed that improving accuracy costs significantly more 
computational resources based on increasing the sample size 
(n), number of clusters (k), and initial cluster centroids (l).

7.4 | Comparison of overall results

In this section, we discuss the overall results of the methods 
that were tested in this study. According to the comparisons 
in Table 2, the classical Friis equation-based path loss model 
and unsupervised-learning-based models yield very low ac-
curacy rates. Additionally, the unsupervised-learning-based 
model has a very high computational cost compared to the 
other three approaches. Linear regression suffers from vari-
ance issues, which yields very inconsistent prediction perfor-
mance. Although K-means clustering achieves good cluster 
separation, it incurs huge computational costs. Overall, our 
conventional LDA-based machine-learning SLPP method 
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outperforms all other approaches in terms of accuracy, per-
formance stability, and computational complexity after solv-
ing the multicollinearity issue in the raw data.

8 |  CONCLUSIONS AND FUTURE 
WORK

In this paper, we demonstrated how a supervised classical 
machine-learning method can be applied to real-time net-
work data collected from various network devices in mul-
tiple locations for both stationary and mobile users while 
considering location-based temporal weather data. We also 

demonstrated how these data can be used to predict the sig-
nal levels perceived by users based on the classical LDA 
approach, which was used to forecast the signal strength 
at a location according to multiple categories (ie, strong, 
good, moderate, or poor). Based on our analysis, it can 
be concluded that this prediction approach yields excel-
lent accuracy, simplicity, speed, and resource efficiency. 
Furthermore, we discussed multicollinearity issue detection 
in raw data and its resolution. The experimental efficiency 
of the proposed model proves that in many cases, classi-
cal machine-learning approaches are not only effective, but 
also computationally inexpensive. In the future, a similar 
model will be used to predict the performance of various 
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combinations of networks, such as 5G, Wi-Fi, satellites, 
and balloons. We will incorporate the data from various 
networks in the spatiotemporal plane to determine the ef-
fectiveness of our model for heterogeneous networks and 
identify machine-learning and deep-learning models that 
are efficient, scalable, and accurate.
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