• Title/Summary/Keyword: Spatial discretization

Search Result 129, Processing Time 0.023 seconds

LDesign and implementation of a content-based image retrieval system using the duplicated color histogram and spatial information (중복된 칼라 히스토그램과 공간 정보를 이용한 내용 기반 화상 검색 시스템 설계 및 구현)

  • 김철원;최기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.889-898
    • /
    • 1997
  • Most general content-based image retrieval techniques use color and texture as retrieval indices. Spatial information is not used to color histogram and color pair based on color retrieval techniques. This paper proposes the selection of a set of representative in the duplicated color histogram, the analysis of spatial information of the selected colors and the image retrieval process based on the duplicated color histogram and spatial information. Two color historgrams for background and object are used in order to decide on color selection in the duplicated color histogram. Spatial information is obtained using a maximum entropy discretization. A retrieval process applies to duplicated color histogram and spatial to retrieve input images and relevant images. As the result of experiment of the image retrieval, improved color his togram and spatial information method hs increased the retrieval effectiveness more the color histogram method and color pair method.

  • PDF

Effect of Grid, Turbulence Modeling and Discretization on the Solution of CFD (격자, 난류모형 및 이산화 방법이 유동해석 결과에 미치는 영향)

  • Park, Dong-Woo;Yoon, Hyun-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.419-425
    • /
    • 2014
  • The current work investigated the variation of numerical solutions according to the grid number, the distance of the first grid point off the ship surface, turbulence modeling and discretization. The subject vessel is KVLCC. A commercial code, Gridgen V15 and FLUENT were used the generation of the ship hull surface and spatial system and flow computation. The first part of examination, the effect of solutions were accessed depending on the grid number, turbulence modeling and discretization. The second part was focus on the suitable selection of the distance of the first grid point off the ship surface: $Y_P+$. When grid number and discretization were fixed the same value, the friction resistance showed differences within 1 % but the pressure resistance showed big differences 9 % depending on the turbulence modeling. When $Y_P+$ were set 30 and 50 for the same discretization, friction resistance showed almost same results within 1 % according to the turbulence modeling. However, when $Y_P+$ were fixed 100, friction resistance showed more differences of 3 % compared to $Y_P+$ of 30 and 50. Whereas pressure resistance showed big differences of 10 % regardless of turbulence modeling. When turbulence modeling and discretization were set the same value, friction, pressure and total resistance showed almost same result within 0.3 % depending on the grid number. Lastly, When turbulence modeling and discretization were fixed the same value, the friction resistance showed differences within 5~8 % but the pressure resistance showed small differences depending on the $Y_P+$.

Numerical Study of High Resolution Schemes for GH2/GO2 Rocket Combustor using Single Shear Coaxial Injector (단일 전단 동축 분사기를 가지는 GH2/GO2 로켓 연소기의 고해상도 수치해석)

  • Jeong, Seung-Min;Um, Jae-Ryeong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.72-83
    • /
    • 2018
  • In this study, a series of CFD analyses were carried out for a hydrogen rocket combustor with a single shear coaxial injector. A hybrid RANS/LES approach was used for the turbulent combustion analysis with a two-dimensional axisymmetric configuration. Three reaction mechanisms, three spatial discretization methods, and three levels of grid resolution were compared to determine an appropriate CFD approach. The performance of the CFD prediction were investigated by comparing the wall heat flux with experimental data. Investigation of the flow field results provides an insight into the characteristics of the turbulent reacting flow of a rocket combustor with a shear coaxial injector.

SPLINE DIFFERENCE SCHEME FOR TWO-PARAMETER SINGULARLY PERTURBED PARTIAL DIFFERENTIAL EQUATIONS

  • Zahra, W.K.;El-Azab, M.S.;Mhlawy, Ashraf M. El
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.185-201
    • /
    • 2014
  • In this paper, we construct a numerical method to solve singularly perturbed one-dimensional parabolic convection-diffusion problems. We use Euler method with uniform step size for temporal discretization and exponential-spline scheme on spatial uniform mesh of Shishkin type for full discretization. We show that the resulting method is uniformly convergent with respect to diffusion parameter. An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. The obtained numerical results show that the method is efficient, stable and reliable for solving convection-diffusion problem accurately even involving diffusion parameter.

NUMERICAL SOLUTIONS OF BURGERS EQUATION BY REDUCED-ORDER MODELING BASED ON PSEUDO-SPECTRAL COLLOCATION METHOD

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.123-135
    • /
    • 2015
  • In this paper, a reduced-order modeling(ROM) of Burgers equations is studied based on pseudo-spectral collocation method. A ROM basis is obtained by the proper orthogonal decomposition(POD). Crank-Nicolson scheme is applied in time discretization and the pseudo-spectral element collocation method is adopted to solve linearlized equation based on the Newton method in spatial discretization. We deliver POD-based algorithm and present some numerical experiments to show the efficiency of our proposed method.

A Study on an Effective Higher-Order Taylor-Galerkin Method for the Analysis of Structural Dynamics (동적 해석을 위한 효과적 고차 Taylor Galerkin법에 관한 연구)

  • 윤성기;박상훈
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.353-359
    • /
    • 1993
  • In this study, the Taylor-Galerkin method is modified to take into consideration the third order term in the Taylor series of the fundamental variable. In the Taylor-Galerkin method, after expressing the governing equation of motion in conservation form, the temporal discretization is done first and then spatial discretization follows in contrast to the conventional approaches. A predictor-corrector type algorithm has been developed previously by the same author. A new computationally efficient direct algorithm is proposed in this study. A study on convergency and accuracy of the solution is carried out. Numerical examples show that this new algorithm exhibits the same order of accuracy with less computational effort.

  • PDF

Numerical analysis of three-dimensional sloshing flow using least-square and level-set method (최소자승법과 Level-set 방법을 이용한 3차원 슬로싱 유동의 수치해석)

  • Choi, Hyoung-Gwon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2401-2405
    • /
    • 2008
  • In the present study, a three-dimensional least square/level set based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The present method can be utilized for the analysis of a free surface flow problem in a complex geometry due to the feature of FEM. Since the finite element method is employed for the spatial discretization of governing equations, an unstructured mesh can be naturally adopted for the level set simulation of a free surface flow without an additional load for the code development except that solution methods of the hyperbolic type redistancing and advection equations of the level set function should be devised in order to give a bounded solution on the unstructured mesh. From the numerical experiments of the present study, it is shown that the proposed method is both robust and accurate for the simulation of three-dimensional sloshing problems.

  • PDF

Time-dependent simplified spherical harmonics formulations for a nuclear reactor system

  • Carreno, A.;Vidal-Ferrandiz, A.;Ginestar, D.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3861-3878
    • /
    • 2021
  • The steady-state simplified spherical harmonics equations (SPN equations) are a higher order approximation to the neutron transport equations than the neutron diffusion equation that also have reasonable computational demands. This work extends these results for the analysis of transients by comparing of two formulations of time-dependent SPN equations considering different treatments for the time derivatives of the field moments. The first is the full system of equations and the second is a diffusive approximation of these equations that neglects the time derivatives of the odd moments. The spatial discretization of these methodologies is made by using a high order finite element method. For the time discretization, a semi-implicit Euler method is used. Numerical results show that the diffusive formulation for the time-dependent simplified spherical harmonics equations does not present a relevant loss of accuracy while being more computationally efficient than the full system.

ON A CERTAIN FINITE DIFFERENCE SCHEME FOR A MODEL FOR DIFFUSION OF BIOLOGICAL POPULATIONS

  • Asghar, Kerayechian
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.455-466
    • /
    • 1999
  • In this note we present a numerical scheme for finding an approxximate solution of an equation which can be viewed as a model for spatial diffusion of age-depednent biological populations. Discretization of the model yields a linear system with a block tridi-agonal matrix. Our main concern will be discussion of stability for this scheme by examining the eigenvalues of the block tridiagonal matrix. Numerical results are presented.

Numerical Dispersive Characteristics and Stability Condition of the Multi-Resolution Time Domain(MRTD) Method (다해상도 시간영역법의 수치적 분산특성과 안정조건)

  • 홍익표;유태훈;윤영중;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.328-335
    • /
    • 1996
  • The numerical dispersive characteristics and the numerical stability confition of the Multi-Resolution Time-Domain(MRTD) method are calculated. A dispersion analysis of the MRTD schemes including a comparison to Yee's Finite-Difference Time-Domain(FDTD) method is given. The superiority of the MRTD method to the spatial discretization is shown. The required computational memory can be reduced by using the MRTD method. We expect that the MRTD method will be very useful method for numerical modelling of electromagnetics.

  • PDF