• Title/Summary/Keyword: Spatial and Temporal Parameters

Search Result 286, Processing Time 0.031 seconds

Spatial Downscaling of MODIS Land Surface Temperature: Recent Research Trends, Challenges, and Future Directions

  • Yoo, Cheolhee;Im, Jungho;Park, Sumin;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.609-626
    • /
    • 2020
  • Satellite-based land surface temperature (LST) has been used as one of the major parameters in various climate and environmental models. Especially, Moderate Resolution Imaging Spectroradiometer (MODIS) LST is the most widely used satellite-based LST product due to its spatiotemporal coverage (1 km spatial and sub-daily temporal resolutions) and longevity (> 20 years). However, there is an increasing demand for LST products with finer spatial resolution (e.g., 10-250 m) over regions such as urban areas. Therefore, various methods have been proposed to produce high-resolution MODIS-like LST less than 250 m (e.g., 100 m). The purpose of this review is to provide a comprehensive overview of recent research trends and challenges for the downscaling of MODIS LST. Based on the recent literature survey for the past decade, the downscaling techniques classified into three groups-kernel-driven, fusion-based, and the combination of kernel-driven and fusion-based methods-were reviewed with their pros and cons. Then, five open issues and challenges were discussed: uncertainty in LST retrievals, low thermal contrast, the nonlinearity of LST temporal change, cloud contamination, and model generalization. Future research directions of LST downscaling were finally provided.

Mapping the Spatial Distribution of IRG Growth Based on UAV

  • Na, Sang-Il;Park, Chan-Won;Kim, Young-Jin;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.495-502
    • /
    • 2016
  • Italian Ryegrass (IRG), which is known as high yielding and the highest quality winter annual forage crop, is grown in mid-south area in Korea. The objective of this study was to evaluate the use of unmanned aerial vehicle (UAV) for the monitoring IRG growth. Unmanned aerial vehicle imagery obtained from middle March to late May in Nonsan, Chungcheongnam-do. Unmanned aerial vehicle imagery corrected geometrically and atmospherically to calculate normalized difference vegetation index (NDVI). We analyzed the relationships between $NDVI_{UAV}$ of IRG and biophysical measurements such as plant height, fresh weight, and dry weight over an entire IRG growth period. The similar trend between $NDVI_{UAV}$ and growth parameters was shown. Correlation analysis between $NDVI_{UAV}$ and IRG growth parameters revealed that $NDVI_{UAV}$ was highly correlated with fresh weight (r=0.988), plant height (r=0.925), and dry weight (r=0.853). According to the relationship among growth parameters and $NDVI_{UAV}$, the temporal variation of $NDVI_{UAV}$ was significant to interpret IRG growth. Four different regression models, such as (1) Linear regression function, (2) Linear regression through the origin, (3) Power function, and (4) Logistic function were developed to evaluate the relationship between temporal $NDVI_{UAV}$ and measured IRG growth parameters. The power function provided higher accurate results to predict growth parameters than linear or logistic functions using coefficient of determination. The spatial distribution map of IRG growth was in strong agreement with the field measurements in terms of geographical variation and relative numerical values when $NDVI_{UAV}$ was applied to power function. From these results, $NDVI_{UAV}$ can be used as a new tool for monitoring IRG growth.

Comparison of the Functional Ambulation Performance Scores of Senior Adults With or Without a History of Falls (낙상 경험 유무에 따른 노인의 기능적 보행성취도 점수(FAP score) 비교)

  • Kwon, Hyuk-Cheol;Kong, Jin-Yong
    • Physical Therapy Korea
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2003
  • The purpose of the study was to determine if there was a difference in the Functional Ambulation Performance score of senior adults with or without a history of falls during walking at a preferred velocity. Twelve subjects with a history of falling (mean age=73.8) and eight subjects with no history of falling (mean age=70.4) participated in the study. Temporal and spatial parameters of gait were analyzed using the computerized GAITRite system. The GAITRite system integrates specific components of locomotion to provide a single, numerical representation of gait, the Functional Ambulation Performance score. The Functional Ambulation Performance score is a Quantitative means of assessing gait based on specific temporal and spatial parameters. Statistical analysis of the two groups demonstrated a significant decrease in Functional Ambulation Performance score for those with a history of falls. They had lower values for step/extremity ratios, mean normalized velocity, and greater values for step times, percent in double support. These results indicate that the GAITRite system can be useful in detecting footfall patterns and selected time and distance measurements of persons with a history of falls and the Functional Ambulation Performance score can be used as indicators of gait performance for senior adults with a history of falls.

  • PDF

Effect of Spatial Distribution of Geotechnical Parameters on Tunnel Deformation (지반 물성치의 공간적 분포에 따른 터널 변위 특성 분석)

  • Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.249-257
    • /
    • 2006
  • The spatial distribution of design parameters greatly affects tunnel behavior during and after construction, as well as in the long-term temporal responses. However, the tunnel design parameters commonly used in numerical modeling tend to be representative or average values of global-scale properties. Furthermore, the uncertainty and spatial variation of the design parameters increase as the tunnel scale increases. Consequently, the probability of failure also increases. In order to achieve structural stability in large-section tunnels, the design framework must take into consideration the quantitative effect of design parameter variations on tunnel behavior. Therefore, this paper suggests a statistical approach to numerical modeling to explore the effect of spatially distributed design parameters in a circular tunnel. Also, the effect of spatial variation in the lining strength is studied in this paper. The numerical results suggest that the deformation around the tunnel increases with an increase in the variation of the design parameters.

The Effect of PNF Method in Functional Restoration of Adult Hemiplegic Patients (PNF 치료가 성인 편마비 환자의 기능회복에 미치는 영향)

  • Bae, Sung-soo;Lee, Keun-heui;Hwang-bo, Gak
    • PNF and Movement
    • /
    • v.3 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • Objectives : The purpose of this study is to identify influence that PNF method have an effect in function restoration of the impaired patients of central nervous system. Methods : The data were collected by 15 adult stroke patients. The treatment was based on proprioceptive neuromuscular facilitation techniques. Temporal and spatial parameters of gait were analysed for using the computerized GAITRite system. Results : In the comparison of functional ambulation profile(FAP) before and after experiment, the FAP was significantly increased in the PNF method. The gait velocity, cadence and single support time asymmetry ratio was significantly increased in the PNF method. The Motor Assessment Scale was significantly increased in the PNF method. Conclusions : Based on these results, it is concluded that the forced PNF method for 6 weeks can be improve the temporal-spatial gait parameters including FAP in hemiplegic patients. Therefore, the forced PNF method is useful to improve the function restoration in hemiplegic patients. Further study should be done to analyze the effects of intervention duration of treatment, optimal time to apply the treatment in more long peried.

  • PDF

SAMPLING ERROR ANALYSIS FOR SOIL MOISTURE ESTIMATION

  • Kim, Gwang-Seob;Yoo, Chul-sang
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.209-222
    • /
    • 2000
  • A spectral formalism was applied to quantify the sampling errors due to spatial and/or temporal gaps in soil moisture measurements. The lack of temporal measurements of the two-dimensional soil moisture field makes it difficult to compute the spectra directly from observed records. Therefore, the space-time soil moisture spectra derived by stochastic models of rainfall and soil moisture was used in their record. Parameters for both models were tuned with Southern Great Plains Hydrology Experiment(SGP'97) data and the Oklahoma Mesonet data. The structure of soil moisture data is discrete in space and time. A design filter was developed to compute the sampling errors for discrete measurements in space and time. This filter has the advantage in its general form applicable for all kinds of sampling designs. Sampling errors of the soil moisture estimation during the SGP'97 Hydrology Experiment period were estimated. The sampling errors for various sampling designs such as satedlite over pass and point measurement ground probe were estimated under the climate condition between June and August 1997 and soil properties of the SGP'97 experimental area. The ground truth design was evaluated to 25km and 50km spatial gap and the temporal gap from zero to 5 days.

  • PDF

Modification of Spatial Grid Based Distributed Model Considering River Basin Characteristics (유역특성을 반영한 공간격자기반의 분포형모형 개선)

  • Park, Jin Hyeog;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.431-436
    • /
    • 2008
  • Recently, the rapid development of GIS technology has made it possible to handle a various data associated with spatially hydrological parameters with their attribute information. Therefore, there has been a shift in focus from lumped runoff models to distributed runoff models, as the latter can consider temporal and spatial variations of discharge. In this research, a distributed rainfall-runoff model based on physical kinematic wave for analysis of surface and river flow was used to simulate temporal and spatial distribution of long-term discharge. The snowfall and melting process model based on Hydro-BEAM was developed, and various hydrological parameters for input data of the model was extracted from basic GIS data such as DEM, land cover and soil map. The developed model was applied for the Shonai River basin(532) in Japan, which has sufficient meteorological and hydrological data, and displayed precise runoff results to be compared to the hydrograph.

A multi-dimensional crime spatial pattern analysis and prediction model based on classification

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.272-287
    • /
    • 2021
  • This article presents a multi-dimensional spatial pattern analysis of crime events in San Francisco. Our analysis includes the impact of spatial resolution on hotspot identification, temporal effects in crime spatial patterns, and relationships between various crime categories. In this work, crime prediction is viewed as a classification problem. When predictions for a particular category are made, a binary classification-based model is framed, and when all categories are considered for analysis, a multiclass model is formulated. The proposed crime-prediction model (HotBlock) utilizes spatiotemporal analysis for predicting crime in a fixed spatial region over a period of time. It is robust under variation of model parameters. HotBlock's results are compared with baseline real-world crime datasets. It is found that the proposed model outperforms the standard DeepCrime model in most cases.

Biomechanical Analysis of Lower Limbs on Speed of Nordic Walking (노르딕워킹의 속도에 따른 하지 관절의 운동역학적인 분석)

  • Yang, Dae-Jung;Lee, Yong-Seon;Park, Seung-Kyu;Kang, Jeong-Il;Lee, Joon-Hee;Kang, Yang-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, 26 normal subjects were studied to compare the biomechanical Analysis of Lower Limbs on Speed of Nordic Walking. The biomechanical variables were determined by performing three-dimensional gait analysis, and the measurements items were spatial and temporal parameters; vertical ground reaction force; and moments of the hip, knee, and ankle joints. The purpose of this study based on the speed of Nordic Walking to the vertical ground reaction force and joint moments of each were analyzed. Nordic Walking with poles while being whether this weight is reduced to load, not the improvement of muscle activity by identify Nordic walking is to allow efficient. The results of the analysis were follows. The spatial parameters of step length, stride length significantly increased with increase in velocity(p<0.001). The temporal parameters of step time, stride time, the duration of double support use, and the duration of single support use also significantly decreased with increase in velocity(p<0.001), but cadence significantly increased(p<0.01). Analysis of the changes in ground reaction force revealed that vertical ground reaction force significantly increased at the initial contact and the terminal stance and decreased at the mid stance with increase in velocity(p<0.001). Moments of the hip and knee joints significantly in creased with increase in velocity whereas that of the ankle joint did not. Gait analysis revealed that weight-bearing decreased and moments of the hip and knee joints increased with increase in velocity(p<0.01). The results of this study may help people perform Nordic walking efficiently and Nordic walking can be used in the gait training of people with an abnormal gait.

Major Watershed Characteristics Influencing Spatial Variability of Stream TP Concentration in the Nakdong River Basin (낙동강 유역에서 하천 TP 농도의 공간적 변동성에 영향을 미치는 주요 유역특성)

  • Seo, Jiyu;Won, Jeongeun;Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.204-216
    • /
    • 2021
  • It is important to understand the factors influencing the temporal and spatial variability of water quality in order to establish an effective customized management strategy for contaminated aquatic ecosystems. In this study, the spatial diversity of the 5-year (2015 - 2019) average total phosphorus (TP) concentration observed in 40 Total Maximum Daily Loads unit-basins in the Nakdong River watershed was analyzed using 50 predictive variables of watershed characteristics, climate characteristics, land use characteristics, and soil characteristics. Cross-correlation analysis, a two-stage exhaustive search approach, and Bayesian inference were applied to identify predictors that best matched the time-averaged TP. The predictors that were finally identified included watershed altitude, precipitation in fall, precipitation in winter, residential area, public facilities area, paddy field, soil available phosphate, soil magnesium, soil available silicic acid, and soil potassium. Among them, it was found that the most influential factors for the spatial difference of TP were watershed altitude in watershed characteristics, public facilities area in land use characteristics, and soil available silicic acid in soil characteristics. This means that artificial factors have a great influence on the spatial variability of TP. It is expected that the proposed statistical modeling approach can be applied to the identification of major factors affecting the spatial variability of the temporal average state of various water quality parameters.