Browse > Article
http://dx.doi.org/10.7780/kjrs.2020.36.4.9

Spatial Downscaling of MODIS Land Surface Temperature: Recent Research Trends, Challenges, and Future Directions  

Yoo, Cheolhee (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Im, Jungho (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Park, Sumin (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Cho, Dongjin (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Korean Journal of Remote Sensing / v.36, no.4, 2020 , pp. 609-626 More about this Journal
Abstract
Satellite-based land surface temperature (LST) has been used as one of the major parameters in various climate and environmental models. Especially, Moderate Resolution Imaging Spectroradiometer (MODIS) LST is the most widely used satellite-based LST product due to its spatiotemporal coverage (1 km spatial and sub-daily temporal resolutions) and longevity (> 20 years). However, there is an increasing demand for LST products with finer spatial resolution (e.g., 10-250 m) over regions such as urban areas. Therefore, various methods have been proposed to produce high-resolution MODIS-like LST less than 250 m (e.g., 100 m). The purpose of this review is to provide a comprehensive overview of recent research trends and challenges for the downscaling of MODIS LST. Based on the recent literature survey for the past decade, the downscaling techniques classified into three groups-kernel-driven, fusion-based, and the combination of kernel-driven and fusion-based methods-were reviewed with their pros and cons. Then, five open issues and challenges were discussed: uncertainty in LST retrievals, low thermal contrast, the nonlinearity of LST temporal change, cloud contamination, and model generalization. Future research directions of LST downscaling were finally provided.
Keywords
land surface temperature; spatial downscaling; kernel-driven; machine learning; data fusion; MODIS;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bartkowiak, P., M. Castelli, and C. Notarnicola, 2019. Downscaling land surface temperature from MODIS dataset with random forest approach over alpine vegetated areas, Remote Sensing, 11(11): 1319.   DOI
2 Bateni, S., D. Entekhabi, and D.-S. Jeng, 2013. Variational assimilation of land surface temperature and the estimation of surface energy balance components, Journal of Hydrology, 481: 143-156.   DOI
3 Bonafoni, S., 2016. Downscaling of Landsat and MODIS land surface temperature over the heterogeneous urban area of Milan, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5): 2019-2027.   DOI
4 Chen, F., S. Yang, Z. Su, and K. Wang, 2016. Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries, ISPRS Journal of Photogrammetry and Remote Sensing, 114: 53-65.   DOI
5 Duan, S.-B., X.-J. Han, C. Huang, Z.-L. Li, H. Wu, Y. Qian, M. Gao, and P. Leng, 2020. Land Surface Temperature Retrieval from Passive Microwave Satellite Observations: State-of-the-Art and Future Directions, Remote Sensing, 12(16): 2573.   DOI
6 Duan, S.-B. and Z.-L. Li, 2016. Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: Case study in northern China, IEEE Transactions on Geoscience and Remote Sensing, 54(11): 6458-6469.   DOI
7 Duan, S.-B., Z.-L. Li, H. Li, F.-M. Göttsche, H. Wu, W. Zhao, P. Leng, X. Zhang, and C. Coll, 2019. Validation of Collection 6 MODIS land surface temperature product using in situ measurements, Remote Sensing of Environment, 225: 16-29.   DOI
8 Ebrahimy, H. and M. Azadbakht, 2019. Downscaling MODIS land surface temperature over a heterogeneous area: An investigation of machine learning techniques, feature selection, and impacts of mixed pixels, Computers & Geosciences, 124: 93-102.   DOI
9 Zhao, W. and S.-B. Duan, 2020. Reconstruction of daytime land surface temperatures under cloudcovered conditions using integrated MODIS/ Terra land products and MSG geostationary satellite data, Remote Sensing of Environment, 247: 111931.   DOI
10 Zhang, H., Y. Song, C. Han, and L. Zhang, 2020. Remote Sensing Image Spatiotemporal Fusion Using a Generative Adversarial Network, https://ieeexplore.ieee.org/abstract/document/9159647, Accessed on Aug. 18, 2020.
11 Zhu, X., J. Chen, F. Gao, X. Chen, and J. G. Masek, 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions, Remote Sensing of Environment, 114(11): 2610-2623.   DOI
12 Ziaul, S. and S. Pal, 2018. Analyzing control of respiratory particulate matter on Land Surface Temperature in local climatic zones of English Bazar Municipality and Surroundings, Urban Climate, 24: 34-50.   DOI
13 Gillespie, A., S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1113-1126.   DOI
14 Fu, P., Y. Xie, Q. Weng, S. Myint, K. Meacham- Hensold, and C. Bernacchi, 2019. A physical model-based method for retrieving urban land surface temperatures under cloudy conditions, Remote Sensing of Environment, 230: 111191.   DOI
15 Gao, F., J. Masek, M. Schwaller, and F. Hall, 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance, IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2207-2218.   DOI
16 Ghent, D., K. Veal, T. Trent, E. Dodd, H. Sembhi, and J. Remedios, 2019. A new approach to defining uncertainties for MODIS land surface temperature, Remote Sensing, 11(9): 1021.   DOI
17 Hain, C. R. and M. C. Anderson, 2017. Estimating morning change in land surface temperature from MODIS day/night observations: Applications for surface energy balance modeling, Geophysical Research Letters, 44(19): 9723-9733.   DOI
18 Hulley, G., T. Islam, R. Freepartner, and N. Malakar, 2016a. Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature and Emissivity Product Collection 1 Algorithm Theoretical Basis Document, Jet Propulsion Laboratory, Pasadena, CA, USA.
19 Hulley, G., N. Malakar, and R. Freepartner, 2016b. Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature and Emissivity Product (MxD21) Algorithm Theoretical Basis Document Collection-6, JPL Publication, Pasadena, CA, USA, pp. 12-17.
20 Hulley, G., S. Shivers, E. Wetherley, and R. Cudd, 2019. New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: A case study for Los Angeles County, California, Remote Sensing, 11(18): 2136.   DOI
21 Kim, D.-H., G.-H. Kim, J.-Y. Byon, B.-J. Kim, and J.- J. Kim, 2017. The Verification of a Numerical Simulation of Urban area Flow and Thermal Environment Using Computational Fluid Dynamics Model, Journal of the Korean Earth Science Society, 38(7): 522-534.   DOI
22 Hulley, G. C., C. G. Hughes, and S. J. Hook, 2012. Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data, Journal of Geophysical Research: Atmospheres, 117: D23.
23 Hutengs, C. and M. Vohland, 2016. Downscaling land surface temperatures at regional scales with random forest regression, Remote Sensing of Environment, 178: 127-141.   DOI
24 Jimenez-Munoz, J. C., J. Cristobal, J. A. Sobrino, G. Soria, M. Ninyerola, and X. Pons, 2008. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data, IEEE Transactions on Geoscience and Remote Sensing, 47(1): 339-349.   DOI
25 Kustas, W. P., J. M. Norman, M. C. Anderson, and A. N. French, 2003. Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship, Remote Sensing of Environment, 85(4): 429-440.   DOI
26 Li, Q., F. Ding, W. Wu, and J. Chen, 2016. Improvement of ESTARFM and its application to fusion of Landsat-8 and MODIS land surface temperature images, Proc. of 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Guangzhou, China, pp. 33-37.
27 Li, W., L. Ni, Z.-L. Li, S.-B. Duan, and H. Wu, 2019. Evaluation of machine learning algorithms in spatial downscaling of MODIS land surface temperature, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7): 2299-2307.   DOI
28 Li, Y., H. Zhang, X. Xue, Y. Jiang, and Q. Shen, 2018. Deep learning for remote sensing image classification: A survey, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6): e1264.
29 Liu, K., S. Wang, X. Li, Y. Li, B. Zhang, and R. Zhai, 2020a. The assessment of different vegetation indices for spatial disaggregating of thermal imagery over the humid agricultural region, International Journal of Remote Sensing, 41(5): 1907-1926.   DOI
30 Liu, H. and Q. Weng, 2018. Scaling effect of fused ASTER-MODIS land surface temperature in an urban environment, Sensors, 18(11): 4058.   DOI
31 Liu, K., S. Wang, X. Li, and T. Wu, 2019. Spatially Disaggregating Satellite Land Surface Temperature With a Nonlinear Model Across Agricultural Areas, Journal of Geophysical Research: Biogeosciences, 124(11): 3232-3251.   DOI
32 Liu, X., Y. Wang, and Q. Liu, 2018. PSGAN: A generative adversarial network for remote sensing image pan-sharpening, Proc. of 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, Oct. 7-10, pp. 873-877.
33 Liu, X., Y. Zhou, W. Yue, X. Li, Y. Liu, and D. Lu, 2020b. Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature, Journal of Cleaner Production, 257: 120529.   DOI
34 Liu, Z., P. Wu, S. Duan, W. Zhan, X. Ma, and Y. Wu, 2017. Spatiotemporal reconstruction of land surface temperature derived from fengyun geostationary satellite data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10): 4531-4543.   DOI
35 Lu, L., T. Zhang, T. Wang, and X. Zhou, 2018. Evaluation of collection-6 MODIS land surface temperature product using multi-year ground measurements in an arid area of Northwest China, Remote Sensing, 10(11): 1852.   DOI
36 Maeda, E. E., 2014. Downscaling MODIS LST in the East African mountains using elevation gradient and land-cover information, International Journal of Remote Sensing, 35(9): 3094-3108.   DOI
37 Mao, K., Z. Yuan, Z. Zuo, T. Xu, X. Shen, and C. Gao, 2019. Changes in global cloud cover based on remote sensing data from 2003 to 2012, Chinese Geographical Science, 29(2): 306-315.   DOI
38 Pan, X., X. Zhu, Y. Yang, C. Cao, X. Zhang, and L. Shan, 2018. Applicability of downscaling land surface temperature by using normalized difference sand index, Scientific Reports, 8(1): 1-14.   DOI
39 Mohamadi, B., S. Chen, T. Balz, K. Gulshad, and S. C. McClure, 2019. Normalized Method for Land Surface Temperature Monitoring on Coastal Reclaimed Areas, Sensors, 19(22): 4836.   DOI
40 Mukherjee, S., P. Joshi, and R. Garg, 2014. A comparison of different regression models for downscaling Landsat and MODIS land surface temperature images over heterogeneous landscape, Advances in Space Research, 54(4): 655-669.   DOI
41 Parastatidis, D., Z. Mitraka, N. Chrysoulakis, and M. Abrams, 2017. Online global land surface temperature estimation from Landsat, Remote Sensing, 9(12): 1208.   DOI
42 Meng, C., Z. L. Li, X. Zhan, J. Shi, and C. Liu, 2009. Land surface temperature data assimilation and its impact on evapotranspiration estimates from the Common Land Model, Water Resources Research, 45(2): W02421.   DOI
43 Park, S., D. Kang, C. Yoo, J. Im, and M.-I. Lee, 2020. Recent ENSO influence on East African drought during rainy seasons through the synergistic use of satellite and reanalysis data, ISPRS Journal of Photogrammetry and Remote Sensing, 162: 17-26.   DOI
44 Peng, Y., W. Li, X. Luo, and H. Li, 2019. A geographically and temporally weighted regression model for spatial downscaling of MODIS land surface temperatures over urban heterogeneous regions, IEEE Transactions on Geoscience and Remote Sensing, 57(7): 5012-5027.   DOI
45 Qiu, J., J. Yang, Y. Wang, and H. Su, 2018. A comparison of NDVI and EVI in the DisTrad model for thermal sub-pixel mapping in densely vegetated areas: A case study in Southern China, International Journal of Remote Sensing, 39(8): 2105-2118.   DOI
46 Srivastava, P. K., D. Han, M. R. Ramirez, and T. Islam, 2013. Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application, Water Resources Management, 27(8): 3127-3144.   DOI
47 Quan, J., W. Zhan, Y. Chen, M. Wang, and J. Wang, 2016. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands, Journal of Geophysical Research: Atmospheres, 121(6): 2638-2657.   DOI
48 Sanchez, J. M., J. M. Galve, J. Gonzalez-Piqueras, R. Lopez-Urrea, R. Niclos, and A. Calera, 2020. Monitoring 10-m LST from the Combination MODIS/Sentinel-2, Validation in a High Contrast Semi-Arid Agroecosystem, Remote Sensing, 12(9): 1453.   DOI
49 Sattari, F., M. Hashim, and A. B. Pour, 2018. Thermal sharpening of land surface temperature maps based on the impervious surface index with the TsHARP method to ASTER satellite data: A case study from the metropolitan Kuala Lumpur, Malaysia, Measurement, 125: 262-278.   DOI
50 Song, J., 2015. Bias corrections for random forest in regression using residual rotation, Journal of the Korean Statistical Society, 44: 321-326.   DOI
51 USGS, 2016. Landsat 8 (L8) data users handbook, Department of the Interior US Geological Survey, https://www.usgs.gov/land-resources/nli/landsat/landsat-8-data-users-handbook, Accessed on Aug. 20, 2020.
52 Wan, Z., 1999. MODIS land-surface temperature algorithm theoretical basis document (LST ATBD), Institute for Computational Earth System Science, Santa Barbara, CA, USA, p. 75.
53 Wan, Z. and J. Dozier, 1996. A generalized split-window algorithm for retrieving land-surface temperature from space, IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892-905.   DOI
54 Wang, J., O. Schmitz, M. Lu, and D. Karssenberg, 2020a. Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis, ISPRS Journal of Photogrammetry and Remote Sensing, 161: 76-89.   DOI
55 Wang, R., W. Gao, and W. Peng, 2020b. Downscale MODIS Land Surface Temperature Based on Three Different Models to Analyze Surface Urban Heat Island: A Case Study of Hangzhou, Remote Sensing, 12(13): 2134.   DOI
56 Weng, Q., P. Fu, and F. Gao, 2014. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data, Remote Sensing of Environment, 145: 55-67.   DOI
57 Xia, H., Y. Chen, Y. Li, and J. Quan, 2019. Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures, Remote Sensing of Environment, 224: 259-274.   DOI
58 Wu, H. and W. Li, 2019. Downscaling land surface temperatures using a random forest regression model with multitype predictor variables, IEEE Access, 7: 21904-21916.   DOI
59 Wu, M., H. Li, W. Huang, Z. Niu, and C. Wang, 2015. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring, Environmental Science: Processes & Impacts, 17(8): 1396-1404.   DOI
60 Wu, P., Z. Yin, H. Yang, Y. Wu, and X. Ma, 2019. Reconstructing geostationary satellite land surface temperature imagery based on a multiscale feature connected convolutional neural network, Remote Sensing, 11(3): 300.   DOI
61 Yamamoto, Y. and H. Ishikawa, 2018. Spatiotemporal variability characteristics of clear-sky land surface temperature in urban areas of Japan observed by Himawari-8, Sola, 14: 179-184.   DOI
62 Yamamoto, Y., H. Ishikawa, Y. Oku, and Z. Hu, 2018. An algorithm for land surface temperature retrieval using three thermal infrared bands of Himawari-8, Journal of the Meteorological Society of Japan, 96B: 43-58.   DOI
63 Alkhaier, F., G. Flerchinger, and Z. Su, 2012. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description, Hydrology and Earth System Sciences, 16(7): 1817.   DOI
64 Abrams, M., S. Hook, and B. Ramachandran, 2002. ASTER user handbook, https://asterweb.jpl.nasa.gov, Accessed on Aug. 20, 2020.
65 Agathangelidis, I. and C. Cartalis, 2019. Improving the disaggregation of MODIS land surface temperatures in an urban environment: a statistical downscaling approach using highresolution emissivity, International Journal of Remote Sensing, 40(13): 5261-5286.   DOI
66 Albright, T. P., A. M. Pidgeon, C. D. Rittenhouse, M. K. Clayton, C. H. Flather, P. D. Culbert, and V. C. Radeloff, 2011. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure, Remote Sensing of Environment, 115(1): 245-254.   DOI
67 Atitar, M., J. A. Sobrino, G. Soria, J.-P. Wigneron, J. C. Jimenez-Munoz, Y. Julien, and A. B. Ruescas, 2008. Land surface temperature retrieved from SEVIRI/MSG2 data: algorithm and validation, Proc. of EUMETSAT Meteorological Satellite Conference, Darmstadt, Germany, Sep. 8-12, pp. 1-5.
68 Bai, Y., M. S. Wong, W.-Z. Shi, L.-X. Wu, and K. Qin, 2015. Advancing of land surface temperature retrieval using extreme learning machine and spatio-temporal adaptive data fusion algorithm, Remote Sensing, 7(4): 4424-4441.   DOI
69 Yang, G., Q. Weng, R. Pu, F. Gao, C. Sun, H. Li, and C. Zhao, 2016. Evaluation of ASTER-like daily land surface temperature by fusing ASTER and MODIS data during the HiWATERMUSOEXE, Remote Sensing, 8(1): 75.   DOI
70 Yang, Y., C. Cao, X. Pan, X. Li, and X. Zhu, 2017. Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression, Remote Sensing, 9(8): 789.   DOI
71 Yoo, C., J. Im, S. Park, and L. J. Quackenbush, 2018. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data, ISPRS Journal of Photogrammetry and Remote Sensing, 137: 149-162.   DOI
72 Yin, Z., P. Wu, G. M. Foody, Y. Wu, Z. Liu, Y. Du, and F. Ling, 2020. Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional Neural Network, https://ieeexplore.ieee.org/document/9115890, Accessed on Aug. 17, 2020.
73 Yoo, C., J. Im, D. Cho, N. Yokoya, J. Xia, and B. Bechtel, 2020. Estimation of All-Weather 1 km MODIS Land Surface Temperature for Humid Summer Days, Remote Sensing, 12(9): 1398.   DOI
74 Yoo, C., J. Im, S. Park, and D. Cho, 2017. Thermal characteristics of Daegu using land cover data and satellite-derived surface temperature downscaled based on machine learning, Korean Journal of Remote Sensing, 33(6-2): 1101-1118 (in Korean with English abstract).   DOI
75 Yoo, C., S. Park, Y. Kim, and D. Cho, 2019. Analysis of Thermal Environment by Urban Expansion using KOMPSAT and Landsat 8: Sejong City, Korean Journal of Remote Sensing, 35(6-4): 1403-1415 (in Korean with English abstract).   DOI
76 Yu, Y., D. Tarpley, H. Xu, and M. Chen, 2010. Goes-r advanced baseline imager (abi) algorithm theoretical basis document for land surface temperature, NOAA NESDIS Center for Satellite Applications and Research, Camp Springs, MD, USA.
77 Zhang, G. and Y. Lu, 2012. Bias-corrected random forests in regression, Journal of Applied Statistics, 39(1): 151-160.   DOI