• 제목/요약/키워드: Spatial Regression Model

Search Result 381, Processing Time 0.023 seconds

Temporal and Spatial Wind Information Production and Correction Algorithm Development by Land Cover Type over the Republic of Korea (한반도 시공간적 바람정보 생산과 토지피복별 보정 알고리즘 개발)

  • Kim, Do Yong;Han, Kyung Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.19-27
    • /
    • 2012
  • Wind is an important variable for various scientific communities such as meteorology, climatology, and renewable energy. In this study, numerical simulations using WRF mesoscale model were performed to produce temporal and spatial wind information over the Republic of Korea during 2006. Although the spatial features and monthly variations of the near-surface wind speed were well simulated in the model, the simulated results overestimated the observed values as a whole. To correct these simulated wind speeds, a regression-based statistical algorithm with different constants and coefficients by land cover type was developed using the satellite-derived LST and NDWI. The corrected wind speeds for the algorithm validation showed strong correlation and close agreement with the observed values for each land cover type, with nearly zero mean bias and less than 0.4 m/s RMSE. Therefore, the proposed algorithm using remotely sensed surface observations may be useful for correcting simulated near-surface wind speeds and producing more accurate wind information over the Republic of Korea.

A Multi-Level Analysis of Influential Factors of Residents' Housing Instability in Korean Metropolitan Environments (대도시 거주자들의 주거불안정 영향요인에 관한 다층분석)

  • Lee, Minju
    • Journal of the Korean Regional Science Association
    • /
    • v.36 no.4
    • /
    • pp.57-67
    • /
    • 2020
  • This study aims to analyze influential factors of residents' housing instability in Korean large cities. The previous studies deal with low-income households' experiences with housing instability. However, this study empirically analyzed the impact of regional characteristics such as spatial openness and community characteristics on residents' housing instability. For this purpose, I analyzed various experiences as symptoms of residents' housing instability using data from the Ministry of Land, Infrastructure, and Transport's (MOLIT) Korean Housing survey through a multi-level logistic regression model. The study finds that regional factors as well as household characteristics influence their housing instability. This result implies that promoting spatial inclusivity alleviate residents' housing instability in metropolitan environments. In addition, this study calls for policy efforts such as a continuous supply of public rental housing and a greater variety of housing types to mitigate housing instability.

Estimating the Monthly Precipitation Distribution of North Korea Using the PRISM Model and Enhanced Detailed Terrain Information (PRISM과 개선된 상세 지형정보를 이용한 월별 북한지역 강수량 분포 추정)

  • Kim, Dae-jun;Kim, Jin-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.366-372
    • /
    • 2019
  • The PRISM model has been used to estimate precipitation in South Korea where observation data are readily available at a large number of weather station. However, it is likely that the PRISM model would result in relatively low reliability of precipitation estimates in North Korea where weather data are available at a relatively small number of weather stations. Alternatively, a hybrid method has been developed to estimate the precipitation distribution in area where availability of climate data is relatively low. In the hybrid method, Regression coefficients between the precipitation-terrain relationships are applied to a low-resolution precipitation map produced using the PRISM. In the present study, a hybrid approach was applied to North Korea for estimation of precipitation distribution at a high spatial resolution. At first, the precipitation distribution map was produced at a low-resolution (2,430m) using the PRISM model. Secondly, a deviation map was prepared calculating difference between altitudes of synoptic stations and virtual terrains produced using 270m-resolution digital elevation map (DEM). Lastly, another deviation map of precipitation was obtained from the maps of virtual precipitation produced using observation data from the synoptic weather stations and both synoptic and automated weather station (AWS), respectively. The regression equation between precipitation and terrain was determined using these deviation maps. The high resolution map of precipitation distribution was obtained applying the regression equation to the low-resolution map. It was found that the hybrid approach resulted in better representation of the effects of the terrain. The precipitation distribution map for the hybrid approach had similar spatial pattern to that for the existing method. It was estimated that the mean annual cumulative precipitation of entire territory of North Korea was 1,195mm with a standard deviation of 253mm.

Real-time flood prediction applying random forest regression model in urban areas (랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측)

  • Kim, Hyun Il;Lee, Yeon Su;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1119-1130
    • /
    • 2021
  • Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.

Monitoring of Lake Water Quality Using LANDSAT TM Imagery Data (LANDSAT TM 영상자료를 이용한 호수 수질 관측)

  • Kim, Tae-Geun;Kim, Kwang-Eun;Cho, Gi-Sung;Kim, Hwan-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.23-33
    • /
    • 1996
  • The conventional monitoring of water quality constrained by time and equipment produce neither complete nor synoptic geographic coverage of pollutant distribution, transport, and water quality. To circumvent these limitations in temporal and spatial measurements, the use of remote sensing is increasingly being involved in the lacustrine environmental research. Consequently, satellite remote sensing, with its synoptic coverage, is used to obtain the eutrophication-related water quality parameters in Daecheong reservoir in this study. The approach involved acquisition of water quality samples from boats of 15 sites on 20 June 1995 and 30 sites on 18 March 1996, simultaneous with Landsat-5 satellite overpass. Regression models have been developed between the water quality parameters and Landsat Thematic Mapper(TM) digital data. The best regression model was determined based on the correlation coefficient which was higher than 0.6. As a result, satellite remote sensing can provide meaningful information on water quality parameters. The regression models developed in this study show good relationship for transparency, turbidity, SS, and chlorophyll, but not for TN and TP because their spectral characteristics are not well defined.

  • PDF

Spatial and Temporal Variability of Water Quality in Korean Dam Reservoirs

  • Lim, Go-Woon;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.452-464
    • /
    • 2009
  • The objectives of this study were to evaluate spatial and temporal variability of water quality in 10 reservoirs and identify the key nutrients (N, P) influencing chlorophyll-a (CHL) along with analysis of empirical models and zonal patterns of total phosphorus (TP) and CHL. We analyzed total nitrogen (TN), TP, CHL, water clarity (Secchi depth, SD), and evaluated potential limiting nutrient using ambient N:P ratios and previous criteria of ambient nutrients. Water clarity and CHL varied largely depending on the seasonal monsoon and type of reservoir, but trophic state was diagnosed as eutrophy, base on mean CHL in most reservoirs. The peak of TP did not match the contents of CHL due to rapid flushing during the high run-off period. In the reservoir of DR, regression coefficient in the $P_r$ was 0.510 but was 0.159 in the $M_o$, while the TP-CHL relation in the YR increased during the monsoon compared to the premonsoon. The regression coefficient in the $P_r$ was not statistically significant but the value of $M_o$ was 0.250. TP showed similar longitudinal zonal gradients among the reservoirs of DR, YR and JR. Empirical models of TP-CHL, based on overall data, showed that CHL was determined by phosphorus($R^2=0.244$, p=0.0019). Regression analysis of CHL-SD showed a stronger linear fit ($R^2=0.638$, p<0.001) than the TP-CHL model.

Determinants of Problem Drinking by Regional Variation among Adult Males in Single-Person Households: Geographically Weighted Regression Model Analysis (1인 가구 성인 남성 문제음주의 지역 간 변이요인에 관한 연구: 지리적 가중회귀모형을 이용하여)

  • Ahn, Junggeun;Choi, Heeseung;Kim, Jiu
    • Journal of Korean Academy of Nursing
    • /
    • v.53 no.1
    • /
    • pp.101-114
    • /
    • 2023
  • Purpose: This study aimed to identify regional differences in problem drinking among adult males in single-person households and predict the determinants. Methods: This study used data from the 2019 Community Health Survey. Geographically weighted regression analysis was performed on 8,625 adult males in single-person households who had been consuming alcohol for the past year. The Si-Gun-Gu was selected as the spatial unit. Results: The top 10 regions for problem drinking among adult males in single-person households were located in the Jeju-do and Jeollanam-do areas near the southern coast, whereas the bottom 10 regions were located in the Incheon and northern Gyeonggi-do areas. Smoking, economic activity, and educational level were common factors affecting problem drinking among this population. Among the determinants of regional disparities in problem drinking among adult males in single-person households, personal factors included age, smoking, depression level, economic activity, educational level, and leisure activity, while regional factors included population and karaoke venue ratio. Conclusion: Problem drinking among adult males in single-person households varies by region, and the variables affecting each particular area differ. Therefore, it is necessary to develop interventions tailored to individuals and regions that reflect the characteristics of each region by prioritizing smoking, economic activity, and educational level as the common factors.

Two Stage Small Area Estimation (이단계 소지역추정)

  • Lee, Sang-Eun;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.293-300
    • /
    • 2012
  • When Binomial data are obtained, logit and logit mixed models are commonly used for small area estimation. Those models are known to have good statistical properties through the use of unit level information; however, data should be obtained as area level in order to use area level information such as spatial correlation or auto-correlation. In this research, we suggested a new small area estimator obtained through the combination of unit level information with area level information.

Application of Generalized Maximum Entropy Estimator to the Two-way Nested Error Component Model with III-Posed Data

  • Cheon, Soo-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.659-667
    • /
    • 2009
  • Recently Song and Cheon (2006) and Cheon and Lim (2009) developed the generalized maximum entropy(GME) estimator to solve ill-posed problems for the regression coefficients in the simple panel model. The models discussed consider the individual and a spatial autoregressive disturbance effects. However, in many application in economics the data may contain nested groupings. This paper considers a two-way error component model with nested groupings for the ill-posed data and proposes the GME estimator of the unknown parameters. The performance of this estimator is compared with the existing methods on the simulated dataset. The results indicate that the GME method performs the best in estimating the unknown parameters in terms of its quality when the data are ill-posed.

Statistical Model Analysis of Urban Spatial Structures and Greenhouse Gas (GHG) - Air Pollution (AP) Integrated Emissions in Seoul (서울시 도시공간구조와 온실가스-대기오염 통합 배출량의 통계모형분석)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.303-316
    • /
    • 2015
  • The relationship between urban spatial structures and GHG-AP integrated emissions was investigated by statistically analyzing those from 25 administrative districts of Seoul. Urban spatial structures, of which data were obtained from Seoul statistics yearbook, were classified into five categories of city development, residence, environment, traffic and economy. They were further classified into 10 components of local area, population, number of households, residential area, forest area, park area, registered vehicles, road area, number of businesses and total local taxes. GHG-AP integrated emissions were estimated based on IPCC(intergovernmental panel on climate change) 2006 guidelines, guideline for government greenhouse inventories, EPA AP-42(compilation of air pollutant emission factors) and preliminary studies. The result of statistical analysis indicated that GHG-AP integrated emissions were significantly correlated with urban spatial structures. The correlation analysis results showed that registered vehicles for GHG (r=0.803, p<0.01), forest area for AP (r=0.996, p<0.01), and park area for AP (r=0.889, p<0.01) were highly significant. From the factor analysis, three groups such as city and traffic categories, economy category and environment category were identified to be the governing factors controlling GHG-AP emissions. The multiple regression analysis also represented that the most influencing factors on GHG-AP emissions were categories of traffic and environment. 25 administrative districts of Seoul were clustered into six groups, of which each has similar characteristics of urban spatial structures and GHG-AP integrated emissions.