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Abstract

Recently Song and Cheon (2006) and Cheon and Lim (2009) developed the generalized maximum en-
tropy(GME) estimator to solve ill-posed problems for the regression coeflicients in the simple panel model. The
models discussed consider the individual and a spatial autoregressive disturbance effects. However, in many ap-
plication in economics the data may contain nested groupings. This paper considers a two-way error component
model with nested groupings for the ill-posed data and proposes the GME estimator of the unknown parameters.
The performance of this estimator is compared with the existing methods on the simulated dataset. The results
indicate that the GME method performs the best in estimating the unknown parameters in terms of its guality
when the data are ill-posed.
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1. Introduction

In recent years a huge of data have been generated in econometrics, biometrics and medical science,
and thus there has been a great deal of interest in handling those large data. Particulary, in many
economic applications with large data the data may contain nested groupings. For example, data on
firms may be grouped by industry, data on states by region and data on individuals by profession. In
this case, one can control for unobserved industry and firm effects using a nested error component
model.

In general the above data are complete or balanced. However, the empirical applications face
missing observations or incomplete panels. The partial or incomplete data may cause that the number
of unknown parameters exceeds that of data points, the data are mutually inconsistent, and the columns
of the design matrix are linearly dependent. Under classical methods, these type of problems may not
be solved. This is called the “ill-posed” problem.

For the ill-posed problem, Judge and Golan (1992), Golan (1994) and Golan and Judge(1996)
investigated the estimation problem in the regression model, and Song and Cheon (2006) recently
proposed a robust generalized maximum entropy(GME) estimator less sensitive to the assumption
and limited situation in the one-way error component regression model. More recently Cheon and
Lim (2009) developed the GME estimator of regression coefficients in a linear regression model with a
spatial autoregressive disturbance with ill-posed data. The GME estimator was proposed to recover the
unknown parameters and the unobserved or unobservable variables for a range of ill-posed problems.
This estimator is based on the classic maximum entropy(ME) approach of Jaynes (1957a, b}, and
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they proposed maximizing the entropy, subject to the available sample-moment information and the
requirement of proper probabilities to recover the unknown probabilities that characterize a given data
set. The GME approach generalizes the maximum entropy problem by considering individual noisy
observations. Song and Cheon (2006) dealt with the only individual effect, and Cheon and Lim (2009)
did a research with the spatial autoregressive effect. Since in general the panel data can be grouped
by other factors, the nested effect needs to be taken into consideration.

This paper considers the two-way nested error component regression model in ill-posed data and
proposes the GME estimator. This estimator is compared with ordinary least squares(OLS), gener-
alized least squares(GLS), a few feasible GLS(FGLS) estimators (Wallace and Hussain, 1969; Ame-
myia, 1971; Swamy and Arora, 1972).

The remaining part of this paper is organized as follows. In Section 2, we describe the two-way
nested error component regression model. In Section 3 we propose the GME method and describe
existing estimation methods for unknown regression coefficients. In Section 4, we apply GME to the
simulated dataset. In Section 5 we conclude the paper with a brief discussion.

2. The Model

We consider the following panel regression model,
Yip =X+ i, i=1,2,...,M; j=1,2,...,N;t=1,...,T, 2.1

where y;j, could denote the output of the j”’ firm in the i industry for the ™ time period. x;;; denotes

a vector of k nonstochastic inputs. The disturbances of (2.1) are assumed that
Uije = pi + Aij + eijr, 2.2

where y; denotes the i unobservable industry specific effect which is assumed to be i.i.d. N(0, o-f,), Aij
denotes the nested effect of the j” firm within the i industry which is assumed to be i.i.d. N(0,03),
and e;;; denotes the remainder disturbance which is also assumed to be N(0, o-%). The p;’s , 4;;’s and
e;j;’s are independent of each other and among themselves. (2.1) and (2.2) can be written in a matrix
form as

y=XB+u, 2.3)
u=Apu+AMAA+e, 2.4)

wherey ~ (MNT x1), X ~ (MNT xk), B ~ (kx1), A} = (Iy®int), Ay = Uyn®ir), i = 1, Un),
A =QQu,...,un), € = (e111,...,emqnt) and iy and iy are vectors of ones of dimension NT and
T, respectively, and ® denotes Kronecker product. The disturbance covariance matrix E(uu’) can be
written as,

Q =05y ® Iy ® Jr) + o3Unw ® J1) + T (Uunt), 25)

where Jy and Jr are matrices of ones of dimension N and T, respectively. We replace Jy by N. Iy, In
by Ey + Jy, Jr by TJy and I by E7 + Jr to get Q1, and collect terms with the same matrices where
J_N = JN/N and Ey = IN - J-N. This gives

Q =20 + 020 + 7305, (2.6)

where 03 = To} +0?%, 05 = NTop +To. Correspondingly, 01 = (In®Iv®Er), Q2 = Iu®EN®@JT)
and Q3 = (Iyy ® Jy ® Jr), respectively.
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Therefore, we can easily obtain Q! as
0= (oY) 0+ (e3) 2+ () 0o e

3. Comparison of Estimators
3.1. OLS and GLS estimators
The ordinary least squares(OLS) estimator in (2.1) is given by

Bows = (X'X)1X'y. 3.1
The OLS estimator is an unbiased and consistent estimator, but may not be efficient because it ignores
the variance components. The OLS residuals are denoted by Wprs = vy — XBors. If variance compo-
nents in (2.5) are known, the generalized least squares(GLS) estimator can be obtained as follows.
2 ra-1vY! v -t
Bous = (X'Q7'X)” x'Qly. (3.2)
However, since variance components are unknown in reality, it may be a theoretical estimator.

3.2. Feasible GLS estimators

In this section we discuss a few feasible GLS(FGLS) estimators when the variance component 2 1s
unknown. The FGLS estimator can be obtained by that first the variance components are estimated
and they are substituted for Q in (3.2). Then the estimated regression coefficients are as follows.

- 2 -1 ~
Brois = (X' QX)) x'Qly, 33)

where Q == 620, +620, +320;. The FGLS estimator has similar properties with the GLS estimator
approximately, but the property of FGLS is unknown so far for a small sample.

3.2.1. A modified Wallace and Hussain(WH) estimator

Wallace and Hussain (1969) suggested to use fip.s instead of the error term, u, to estimate the variance

components in the two-way error component model. The modified variance components are estimated
as follows.

s Qulos 1 & ii(u PR (3.4)
¢ MN(T -1  MNT-1) o ije — Hij )" .
., R M N
. i U T =
52 = Mous Qaoftors _ iy — .)? (3.5)
M(N-1)  MNN-1) &4
52 = Tous@fiors _ NT < 5 G
3= = i, - .

M M

i=1

The WH estimator using the above estimated modified variance components can be obtained by sub-
stituting (3.4)~(3.6) for (3.3).
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3.2.2. A modified Amemiya-Type(AM) estimator

Amemiya (1971) suggested to use the WTN residual for estimating the variance components. The
estimated variance components are given by,

., _
— _ HyryQiltwrn

_ YwryEriwrn 37

TeTTMNT - 1) @D

52 = BwryQaltwry 3.9)
M(N-1)

7= —MWTN%MWTN, (3.9)

\lvhere wrn = y - Xs~s - (_)-7 - X...sBs)’ y. = ZZZ)’I}I/MNT, Xs = ZZZXijrs /MNT and
By = (X.01X,)"1X,Q,y. Here X, denotes the exogenous regressor excluding the intercept. The AM
estimator is obtained by substituting (3.7)—(3.9) for (3.3).

3.2.3. A modified Swamy and Arora(SA) estimator

Swamy and Arora (1972) fitted regression models using within transformation, between individual
regression and between time regression, and then estimated the variance components by mean square
error of each model. Applying the results of Swamy and Arora (1972) to (2.1) provides the estimated
variance components as follows.

s _ Y Q- Y 01 X(X, 01 X)X, 01y

¢ MNT -1)—k ’ (3.10)
YOy -y XX, 00 X,) ' X, Ory
73 = M(N-1)—k ’ G
’ N ’ -1y’

The SA estimator is obtained by substituting (3.10)—(3.12) for (3.3).

3.3. The GME estimator

Based on the GME formulation proposed by Song and Cheon (2006), we perform the reparameteri-
zation by giving probabilities on each support corresponding to each B, t, Amn» €mne- Refer to Song
and Cheon (2006) for more details in the GME formulation.

We perform the reparameterization for 3, i1, A and e as follows.

rz; 0 - 0] m

B=2p= (:) 22 T (3.13)
10 0 -z g
fl, O’ 011 &

p=Fg= (:) ff ? =, (3.14)
[0 0 - fM »
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@, 0 - 0 [ by
aeab=]| 0 a, 0 || b |, (3.15)
(:) 0 @y b/t:/IN
Vll'u 0 0 Wit
e=vw=| 0 i o || e | (3.16)
' WMNT
0 Vinr |

where Bi = 32 zipras k = 1,2, K. % = @22 2kads Pk = (Prty Pias- s Pka)s Hm =
Z,{:I fm,igmia m=12...,M, fm = (ﬁnl-fst ces afm/)a Em = (gmhgm% s 8mi) An = Z(lz'):} AmndPmnd
m= 12,.... M, n = L2, N, Gun = (Qumt,Qunzs - Gpup)s By = (brants by - -+ Bond)s
Emnt = Zj:l Vint jWmnij>, M = L2,....Mn=12,....N,t=12,...T, Vour = Vst Vimnr2s - - - » VinntJ)
and w,,, = Winnit> Winni2s « - - » Wit )-

With the above reparameterization, we propose the GME estimator in the two-way nested error
component regression model. The GME formulation is as follows.

max H{p,g,b,w)=—p' In(p) — g’ In(g) — ¥ In(h) — w' In(w), (3.17)
p.8.b,w
subject to the data-consistency relations

y=XZp+ Iy ®iyr)Fg+ (Iun ®iy)Ab + Vw, (3.18)

where Vmnt = Z;{;] kam( Zi:] ZA'apka)+ZlI':1 fmign1i+25=1 amm?'bmnd‘}‘Z;:l Vintj Wmnej» M = L,2,...,M;
n=12,...,N;t=12,...,T and the additivity normalization constraint

ix =k ®Ly) p, iy=(Uy®i)g (3.19)

iyn = (IMN @ L,D} b, iMnT = (IMNT ®L/J) w. (320)

Now we derive the GME estimator. First we define the Lagrangian equation as below.

L=—plnp-ghg-—blnb-whw+&[y-XZp—-(Iu®iyr)Fg
~{Iyy @ ir)Ab - Vw] + 6 [ix — (Ix ®i:4)p] + 7' igg — (I ® l})g]
+7 [imn = (Iun ® i) B] + 17 [imanr — (Tunr ® &) w]
to find the interior solution. Here ¢ € R 6 € RX,r € RM,y € RMN and 7 € RMNT are the
associated vectors of Lagrange multipliers. Taking the first-order differentiation in L, the p estimator
is obtained by
P = exp(-Z'X'&) © {Ux ® ialy) exp(-Z' X' O, (32D

where © is the Hadamard(elementwise) product. In (3.21), £ may be obtained by the iterative way
within the possible range of £. In this paper, we set £ € [~1, 1] because the function of ¢ decreases
and then increases at near to zero as £ increases in finding the minimum.
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Finally we estimate the regression coefficient 8 with the estimated p in (3.21) as follows.
B=Zp = Zexp(-Z'X'§) © {Ux ® iaiy) exp(-Z'X'£)) . (3.22)
In (3.22), the k¥ GME estimator is given by

A
Bomew = Z ZkaPka
a=1
i €xp (_Zka Z,’,V,Izl ZnNzl Z,T:1 kantf)
= Zka = ’
(&)

a=1

where Qk(é) = 22=1 exp [ - Zka(Z,A,le ZnN:l Z;T=1 kant‘f)]-

4. Numerical Results

We consider the following regression equation,

y,-j,:xij,,B+u,-j,, i=1,...,.M, Jj= 1,...,N;t=1,...T,
Uije = i + Aij + eijy,

where y is a (300 x 1) dependent variable vector, M = 25, N = 4and T = 3, X is a (300 x 4)
independent variable vector and 8 is a (4 X 1) regression coefficient vector. yis (300x 1), Ais (300x 1)
and e is (300 x 1) error vectors. u;j, was generated from y; ~ IIN(0,072), A;; ~ IIN(0, o?) and e;;; ~
IIN(0,02). This paper considers the variance components are known, thus we fixed 0% = oﬁ +o%+
0% = 20; here {02, 0%2, 0%} were varied over the set {(2, 8, 10),(4,6, 10),(6,8,6),(8,4,8),(10,6,4),
(12,6,2),(14,2,4),(16,2,2)}. To form a design matrix with a desired condition number, c(X’X) = m,
the singular value decomposition(SVD) of X was recovered (Belsley, 1991); i.e., X is changed to
X, = QL,R according to m. Then, the eigenvalues in L were replaced with

2 2m
= \/————,l,l,w/ .
a [ 1+m 1+m]

The GME estimator was first applied to estimate 8. Supports of the GME estimator are as follows. The
parameter support is z; = [-5, -3, 0, 3, 5] for each k, the individual effect support is f; = [-3,0.3] for
each i, the time effect support is a; = [—3,0.3] for each t and the remainder stochastic disturbance term
support is v; = [-3,0.3] for each i and . GME was run 1000 times independently. For comparison,
the OLS, GLS, WH, AM and SA estimators were also applied and run 1000 times independently.

Table 1 provides that when the distortion of data is very serious, GME performs the best among all
estimators; i.e., when m = 100, 0'121 =10, o3 =6, 02 = 4, MSEs of OLS, GLS, WH, AM and SA are
251.5851, 75.4855, 75.4414, 75.2932 and 75.3617, respectively, but GME has only 2.5083. However,
when the condition number is 1 which means the complete data, the efficiency of GME is very poor.
For example, when m = 1, o = 10, 0% = 6, 02 = 4, MSEs of OLS, GLS, WH, AM, SA and GME
are 0.0672, 0.0192, 0.0192, 0.0197, 0.0205 and 1.9160, respectively. The reason why MSE of GME
is large is because the GME estimator has been developed to recover the ill-posed problems. Thus
GME may not perform well in the complete data. Note that even if the data is ill-posed, GLS and
FGLS have similar MSEs. Furthermore, when the condition number increases, the GME estimators
are quite stable, near to 2.5, but MSEs of all other existing estimators increase sharply.
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Table 1: The comparison of MSE of estimators

o o5 a? m OLS wWH GLS AM SA GME
1 0.0674 0.0446 0.0445 0.0451 0.0438 1.8786

2 8 10 10 42.6648 28.4412 28.3044 28.3190 28.4585 2.5028
50 150.8582 98.5139 97.9431 97.7482 98.5370 2.5034

100 267.9455 182.8609 181.5762 181.3080 182.8110 2.4950

1 0.0662 0.0434 0.0433 0.0436 0.0444 1.8808

4 6 16 10 40.5042 27.7557 275721 27.6890 277773 2.4959
50 145.8705 95.3064 94.6524 94.4831 95.2816 2.5014

100 270.6062 178.1333 175.8912 176.3170 178.3699 2.4981

1 0.0678 0.0293 0.0291 0.0295 0.0302 1.9076

6 8 6 10 41.9893 17.0074 16.9823 16.9790 16.9968 2.4966
50 138.2713 60.5151 60.1889 60.2611 60.5057 2.5022

100 260.5676 109.0608 108.7257 108.5749 109.2259 25125

1 0.0688 0.0363 0.0362 0.0367 0.0376 1.9653

5 4 g 10 40.9193 22.2646 22,1132 22.1630 222617 2.5010
50 1429272 69.0460 68.9861 68.4853 69.1285 2.5014

100 252.6091 129.9312 129.6206 128.6221 129.7769 2.5166

1 0.0672 0.0192 0.0192 0.0197 0.0205 19160

10 6 4 10 403534 11.5876 11.5539 11.5520 11.5877 25119
50 139.0700 38.1419 37.7319 37.9364 38.0910 2.4948

100 251.5851 754414 75.4855 75.2932 75.3617 2.5083

1 0.0658 0.0100 0.6100 0.0108 0.0115 19192

12 6 ) 10 42.1791 5.9634 5.9392 5.9479 5.9588 25068
50 139.0043 20.4561 20.3352 20.3226 20.3786 25166

100 280.1318 34.1239 34.0449 33.8842 34.0070 2.5083

1 0.0711 0.0181 0.0180 0.0185 0.6199 1.9326

14 ) 4 10 37.4508 10.3213 10.2296 10.2425 10.3040 2.5059
50 130.3356 35.7995 35.7499 35.5827 35.7877 2.5051

100 282.9393 67.0270 66.9162 66.4742 66.9194 25087

I 0.0693 0.0090 0.0090 0.0096 0.0112 19149

16 5 5 10 38.6434 5.9888 5.9838 5.9877 5.9920 25130
50 146.3061 20.2304 19.9994 19.9951 20.0974 2.5145

100 277.9596 38.1689 37.7730 37.9002 37.9671 25165

For more detailed comparison, we drew scatter plots for vy vs. ¥ and 8 vs. B produced by OLS,
GLS, WH, AM, SA and GME when m = 1 and m = 100, respectively, in a randomly selected sample
(Figure 1, 2). The figures support the result of Table 1; i.e., when the data is distorted seriously(m
is large), the GME estimator performs the best because $ and 3 by generated GME are closest to y
and 3, respectively, among all estimators. Thus, it is reasonable that GME is a robust and quite good
efficient estimator for ill-posed problems.

5. Conclusion

This paper proposes the GME estimator for ill-posed problems in the two-way nested error compo-
nent model, and has shown how ill-posed problems are solved using the GME formulation. GME is
compared with existing methods on the simulated dataset and numerical results indicate that GME is
the best estimator for ill-posed problems in terms of quality of the estimator.

The GME approach employed in this paper appears to offer an advantage over conventional meth-
ods that the GME approach has a capability to recover information from small samples of data with a
degree of precision when the data are distorted seriously.

Further research should extend the ill-posed error component panel regression model to allow for
heteroskedasticity and serial correlation in the disturbances.
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<

Figure 1: Comparison of partial scatter plots for y vs. $ produced by OLS, GLS, WH, AM, SA and GME when
0,2 =10,02=6,0,2=4,and (a)m = 1 and (b) m = 100.

(@ m=1 (b) m = 100

—— B(true) e B(true)
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- B{gme) s - - B(gme)
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Figure 2: Comparison of scatter plots for 8 vs. 8 produced by OLS, GLS, WH, AM, SA and GME when
0,2 =10,0,* = 6,02 =4, and (a) m = 1 and (b) m = 100.
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