DOI QR코드

DOI QR Code

Estimating the Monthly Precipitation Distribution of North Korea Using the PRISM Model and Enhanced Detailed Terrain Information

PRISM과 개선된 상세 지형정보를 이용한 월별 북한지역 강수량 분포 추정

  • Kim, Dae-jun (National Center for Agro-Meteorology, Seoul National University) ;
  • Kim, Jin-Hee (National Center for Agro-Meteorology, Seoul National University)
  • Received : 2019.11.12
  • Accepted : 2019.12.03
  • Published : 2019.12.30

Abstract

The PRISM model has been used to estimate precipitation in South Korea where observation data are readily available at a large number of weather station. However, it is likely that the PRISM model would result in relatively low reliability of precipitation estimates in North Korea where weather data are available at a relatively small number of weather stations. Alternatively, a hybrid method has been developed to estimate the precipitation distribution in area where availability of climate data is relatively low. In the hybrid method, Regression coefficients between the precipitation-terrain relationships are applied to a low-resolution precipitation map produced using the PRISM. In the present study, a hybrid approach was applied to North Korea for estimation of precipitation distribution at a high spatial resolution. At first, the precipitation distribution map was produced at a low-resolution (2,430m) using the PRISM model. Secondly, a deviation map was prepared calculating difference between altitudes of synoptic stations and virtual terrains produced using 270m-resolution digital elevation map (DEM). Lastly, another deviation map of precipitation was obtained from the maps of virtual precipitation produced using observation data from the synoptic weather stations and both synoptic and automated weather station (AWS), respectively. The regression equation between precipitation and terrain was determined using these deviation maps. The high resolution map of precipitation distribution was obtained applying the regression equation to the low-resolution map. It was found that the hybrid approach resulted in better representation of the effects of the terrain. The precipitation distribution map for the hybrid approach had similar spatial pattern to that for the existing method. It was estimated that the mean annual cumulative precipitation of entire territory of North Korea was 1,195mm with a standard deviation of 253mm.

북한 지역은 남한에 비해 기상관측 지점이 매우 적기 때문에 남한에서 강수 추정에 주로 이용되는 PRISM 모형을 그대로 적용하여 강수분포를 추정하기는 어렵다. 이처럼 자료가 불충분한 지역의 강수분포를 추정하기 위하여, 저해상도 PRISM 모형 구동 결과에 강수-지형 관계에 근거한 보정 값을 적용해 강수 분포를 추정할 수 있는 하이브리드 방식이 개발되어 사용되고 있다. 본 연구에서는 기존 북한지역의 고해상도 강수 분포도 추정 방식을 개선된 방법에 따라 1981-2010년 평년 기간의 적산 강수량 분포도를 제작하고자 하였다. 우선, 남한지역의 270m 해상도 DEM과 종관관측지점의 고도값으로부터 IDW한 가상지형간의 편차(고도편차)를 계산하였다. PRISM 모형을 이용하여 종관관측지점의 강수량을 기반으로 2,430m의 저해상도 가상강수 분포도를 제작한 후, 종관 및 방재 기상 관측지점의 강수자료를 이용해 270m의 고해상도 강수분포도를 제작하여 둘 간의 편차(강수편차)를 계산하였다. 남한지역의 고도편차와 강수편차를 이용하여 4방위 경사향에 따른 월별 강수-지형 관계 회귀식을 도출하였고, 최종적으로 북한지역의 27개 기상 관측지점으로부터 PRISM 모형을 구동하여 만든 2,430m의 저해상도 강수분포도에 강수-지형간 회귀식을 반영하여 해상도가 향상된 강수분포도를 산출하였다. 새롭게 제작된 북한지역의 강수분포는 기존 강수분포도와 비교했을 때 지형의 영향이 더욱 잘 반영된 효과를 확인할 수 있었다. 강수분포도에 따르면, 연평균 적산강수량은 1,159mm이며, 표준편차는 253mm로 추정되었다.

Keywords

References

  1. Chung, U., K. Yun, K. S. Cho, J. H. Yi, and J. I. Yun, 2009: The PRISM-based rainfall mapping at an enhanced grid cell resolution in complex terrain. Korean Journal of Agricultural and Forest Meteorology 11, 72-78. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.2.072
  2. Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33, 140-158. https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  3. Kim, D. J., and J. I. Yun, 2011: Estimation of monthly precipitation in North Korea using PRISM and digital elevation model. Korean Journal of Agricultural and Forest Meteorology 13(1) 35-40. DOI: 10.5532/KJAFM.2011.13.1.035 (in Korean with English abstract)
  4. KMA (Korea Meteorological Administration): http://data.kma.go.kr
  5. Nalder, I. A., and R.W. Wein, 1998: Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology 92, 211-225. https://doi.org/10.1016/S0168-1923(98)00102-6
  6. Park, J. C., and M. K. Kim, 2013: Comparison of precipitation distributions in precipitation data sets representing 1km spatial resolution over South Korea produced by PRISM, IDW, and cokriging. Journal of the Korean Association of Geographic Information Studies 16(3), 147-163. doi: 10.11108/kagis.2013.16.3.14 (in Korean with English abstract)
  7. Phillips, D. L., J. Dolph, and D. Marks, 1992: A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agricultural and Forest Meteorology 58, 119-141. https://doi.org/10.1016/0168-1923(92)90114-J
  8. Seino, H., 1993: An estimation of distribution of meteorological elements using GIS and AMeDAS data. Journal of Agricultural Meteorology (Japan) 48, 379-383. https://doi.org/10.2480/agrmet.48.379
  9. Shin, S. C., M. G. Kim, M. S. Suh, D. K. Rha, D. H. Jang, C. S. Kim, W. S. Lee, and Y. H. Kim, 2008: Estimation of high resolution gridded precipitation using GIS and PRISM. Atmosphere 18, 71-81. (in Korean with English abstract)
  10. Thiessen, A. H., 1991: Precipitation averages for large areas. Monthly Weather Review 39, 1082-1084.
  11. Um, M. J., C. S. Jeong, and W. Cho, 2009: Analysis of precipitation distribution in the region of Gangwon with spatial analysis (I): Classification of precipitation zones and analysis for seasonal and annual precipitation. Journal of the Korean Society of Hazard Mitigation 9(5), 103-113. (in Korean with English abstract)
  12. Yun, J. I., 2000: Estimation of climatological precipitation of North Korea by using a spatial interpolation scheme. Korean Journal of Agricultural and Forest Meteorology 2, 16-23. (in Korean with English abstract)