• Title/Summary/Keyword: Sparse Systems

Search Result 268, Processing Time 0.03 seconds

SPLITTING METHOD OF DENSE COLUMNS IN SPARSE LINEAR SYSTEMS AND ITS IMPLEMENTATION

  • Oh, Seyoung;Kwon, Sun Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.147-159
    • /
    • 1997
  • It is important to solve the large sparse linear system appeared in many application field such as $AA^Ty={\beta}$ efficiently. In solving this linear system, the sparse solver using the splitting method for the relatively dense column is experimentally better than the direct solver using the Cholesky method.

  • PDF

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

Majorization-Minimization-Based Sparse Signal Recovery Method Using Prior Support and Amplitude Information for the Estimation of Time-varying Sparse Channels

  • Wang, Chen;Fang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4835-4855
    • /
    • 2018
  • In this paper, we study the sparse signal recovery that uses information of both support and amplitude of the sparse signal. A convergent iterative algorithm for sparse signal recovery is developed using Majorization-Minimization-based Non-convex Optimization (MM-NcO). Furthermore, it is shown that, typically, the sparse signals that are recovered using the proposed iterative algorithm are not globally optimal and the performance of the iterative algorithm depends on the initial point. Therefore, a modified MM-NcO-based iterative algorithm is developed that uses prior information of both support and amplitude of the sparse signal to enhance recovery performance. Finally, the modified MM-NcO-based iterative algorithm is used to estimate the time-varying sparse wireless channels with temporal correlation. The numerical results show that the new algorithm performs better than related algorithms.

Sparse Data Cleaning using Multiple Imputations

  • Jun, Sung-Hae;Lee, Seung-Joo;Oh, Kyung-Whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.119-124
    • /
    • 2004
  • Real data as web log file tend to be incomplete. But we have to find useful knowledge from these for optimal decision. In web log data, many useful things which are hyperlink information and web usages of connected users may be found. The size of web data is too huge to use for effective knowledge discovery. To make matters worse, they are very sparse. We overcome this sparse problem using Markov Chain Monte Carlo method as multiple imputations. This missing value imputation changes spare web data to complete. Our study may be a useful tool for discovering knowledge from data set with sparseness. The more sparseness of data in increased, the better performance of MCMC imputation is good. We verified our work by experiments using UCI machine learning repository data.

A Scalable Parallel Preconditioner on the CRAY-T3E for Large Nonsymmetric Spares Linear Systems (대형비대칭 이산행렬의 CRAY-T3E에서의 해법을 위한 확장가능한 병렬준비행렬)

  • Ma, Sang-Baek
    • The KIPS Transactions:PartA
    • /
    • v.8A no.3
    • /
    • pp.227-234
    • /
    • 2001
  • In this paper we propose a block-type parallel preconditioner for solving large sparse nonsymmetric linear systems, which we expect to be scalable. It is Multi-Color Block SOR preconditioner, combined with direct sparse matrix solver. For the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with Multi-Color ordering. Since most of the time is spent on the diagonal inversion, which is done on each processor, we expect it to be a good scalable preconditioner. We compared it with four other preconditioners, which are ILU(0)-wavefront ordering, ILU(0)-Multi-Color ordering, SPAI(SParse Approximate Inverse), and SSOR preconditiner. Experiments were conducted for the Finite Difference discretizations of two problems with various meshsizes varying up to $1025{\times}1024$. CRAY-T3E with 128 nodes was used. MPI library was used for interprocess communications, The results show that Multi-Color Block SOR is scalabl and gives the best performances.

  • PDF

Sparse Channel Estimation of Single Carrier Frequency Division Multiple Access Based on Compressive Sensing

  • Zhong, Yuan-Hong;Huang, Zhi-Yong;Zhu, Bin;Wu, Hua
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.342-353
    • /
    • 2015
  • It is widely accepted that single carrier frequency division multiple access (SC-FDMA) is an excellent candidate for broadband wireless systems. Channel estimation is one of the key challenges in SC-FDMA, since accurate channel estimation can significantly improve equalization at the receiver and, consequently, enhance the communication performances. In this paper, we study the application of compressive sensing for sparse channel estimation in a SC-FDMA system. By skillfully designing pilots, their patterns, and taking advantages of the sparsity of the channel impulse response, the proposed system realizes channel estimation at a low cost. Simulation results show that it can achieve significantly improved performance in a frequency selective fading sparse channel with fewer pilots.

Object Tracking based on Relaxed Inverse Sparse Representation

  • Zhang, Junxing;Bo, Chunjuan;Tang, Jianbo;Song, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3655-3671
    • /
    • 2015
  • In this paper, we develop a novel object tracking method based on sparse representation. First, we propose a relaxed sparse representation model, based on which the tracking problem is casted as an inverse sparse representation process. In this process, the target template is able to be sparsely approximated by all candidate samples. Second, we present an objective function that combines the sparse representation process of different fragments, the relaxed representation scheme and a weight reference prior. Based on some propositions, the proposed objective function can be solved by using an iteration algorithm. In addition, we design a tracking framework based on the proposed representation model and a simple online update manner. Finally, numerous experiments are conducted on some challenging sequences to compare our tracking method with some state-of-the-art ones. Both qualitative and quantitative results demonstrate that the proposed tracking method performs better than other competing algorithms.

Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

  • Qiao, Baijie;Mao, Zhu;Sun, Hao;Chen, Songmao;Chen, Xuefeng
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.369-384
    • /
    • 2020
  • A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.

Modal parameter identification with compressed samples by sparse decomposition using the free vibration function as dictionary

  • Kang, Jie;Duan, Zhongdong
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.123-133
    • /
    • 2020
  • Compressive sensing (CS) is a newly developed data acquisition and processing technique that takes advantage of the sparse structure in signals. Normally signals in their primitive space or format are reconstructed from their compressed measurements for further treatments, such as modal analysis for vibration data. This approach causes problems such as leakage, loss of fidelity, etc., and the computation of reconstruction itself is costly as well. Therefore, it is appealing to directly work on the compressed data without prior reconstruction of the original data. In this paper, a direct approach for modal analysis of damped systems is proposed by decomposing the compressed measurements with an appropriate dictionary. The damped free vibration function is adopted to form atoms in the dictionary for the following sparse decomposition. Compared with the normally used Fourier bases, the damped free vibration function spans a space with both the frequency and damping as the control variables. In order to efficiently search the enormous two-dimension dictionary with frequency and damping as variables, a two-step strategy is implemented combined with the Orthogonal Matching Pursuit (OMP) to determine the optimal atom in the dictionary, which greatly reduces the computation of the sparse decomposition. The performance of the proposed method is demonstrated by a numerical and an experimental example, and advantages of the method are revealed by comparison with another such kind method using POD technique.

An improved kernel principal component analysis based on sparse representation for face recognition

  • Huang, Wei;Wang, Xiaohui;Zhu, Yinghui;Zheng, Gengzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2709-2729
    • /
    • 2016
  • Representation based classification, kernel method and sparse representation have received much attention in the field of face recognition. In this paper, we proposed an improved kernel principal component analysis method based on sparse representation to improve the accuracy and robustness for face recognition. First, the distances between the test sample and all training samples in kernel space are estimated based on collaborative representation. Second, S training samples with the smallest distances are selected, and Kernel Principal Component Analysis (KPCA) is used to extract the features that are exploited for classification. The proposed method implements the sparse representation under ℓ2 regularization and performs feature extraction twice to improve the robustness. Also, we investigate the relationship between the accuracy and the sparseness coefficient, the relationship between the accuracy and the dimensionality respectively. The comparative experiments are conducted on the ORL, the GT and the UMIST face database. The experimental results show that the proposed method is more effective and robust than several state-of-the-art methods including Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC), KCRC and Two Phase Test samples Sparse Representation (TPTSR).