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SPLITTING METHOD OF DENSE COLUMNS IN 
SPARSE LINEAR SYSTEMS 

AND ITS IMPLEMENTATION

Seyoung Oh and Sun Joo Kwon

Abstract. It is important to solve the large sparse linear system 
appeared in many application field such as AA^y = (3 efficiently. In 
solving this linear system, the sparse solver using the splitting method 
for the relatively dense column is experimentally better than the direct 
solver using the Cholesky method.

1. Introduction
In the context of interior-point method for solving linear program­

ming efficiently and many other applications, the systems of linear equa­

tions of the form

(1) AD2 人「y = [3

has to be solved where A is a large sparse full row rank matrix having 

a small number of dense columns and D is a diagonal matrix. The 

process of solving the system requires the most time consumming in 

every iteration of each solving technique of the application problems.

For the system (1) many well-behaved methods have been suggested 

by using Cholesky factorization ([1], [2]) and preconditioned conjugate 

gradient ([3]). Most of the methods, however, are suffering from the 

difficulties with the matrix AD2 A1- being very dense when A has a small 

number (even one) of dense columns and these methods are sensitive 

to numerical error and rank-deficiency of preconditioners.

Received by the editors on June 30, 1997.
1991 Mathematics Subject Classifications : Primary 65F10.
Key words and phrases: Splitting method, Sparse linear system.

147



148 SEYOUNG OH AND SUN JOO KWON

A different approach called splitting method for a slightly different 

problem from (1) has been proposed in [4] without computational re­

sults. It is based on making the matrix A sparse with some linking 

matrices and solving the large sparse matrix. In this paper a slightly 

modified splitting method with a different parameter is applied to the 

system (1). We implemented the method and ran the codes with many 

of randomly generated test problems to obtain the optimal parameter. 

We used subroutines from SLATEC for sparse solver and LAPACK for 

Cholesky solver in NetLib.

The numerical results show that the larger the problem size is, the 

faster the method works and when the dense column is splitting into 

approximately some proper parameter k sparse columns, the efficiency 

of this method is obtained.

In the section 2, some application problems of (1) are introduced. 

And a modified splitting method for (1) is described in the section 3. 

The comparison between the direct solver of Cholesky factorization and 

the large sparse conjugate gradient method with incomplete Cholesky 

preconditioner is implemented and the computational results for the 

codes are shown.

2. Applications
2.1. Interior-point method. Consider the following general linear 

program;

. Tmm c x

(2) s.t. Ax > b,

⑦ 之 0,

where A € 2?nxm, n < m, c € 2?m, b e By adding surplus variables 

s to the constraints, the standard form of (2) can be written as

min (? x

(3) s.t. Ax — 5 = 6,

⑦, 5 > 0.
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The interior point algorithm such as like primal-dual path following 

method considers the dual of (2);

max bTw

(4) s.t. < c,

w > 0,

and by adding slack variables t to the constraint, the standard form of

(4) is obtained as following

max b『w

(5) s.t. Atw + i = c,

w,t > 0.

Denote the diagonal matrices S and T with the components 

of ⑬ w, s and t on their diagonals respectively. Then the interior point 

algorithm always keeps the matrices X, W, S and T positive and the 

system of equations

A ⑦ _ a
Aw = b 

- _x-iT at -
A W^S

(6)

must be solved at every iteration, which is main computational work 

in the whole algorithm. Because of the indefinite system, it is solved 

for A⑦ first in terms of Aw ;

A ⑦ = ——AtAw)

and substituting this into the second subsystem of (6) leads to

G4Xr-L4T + W1S)Aw = (6 + AXT-^a).

Since X, T, IV, and S are diagonal matrices, AXT~xJ^ + W~XS is 

symmetric positive definite matrix and can be considered as the type 

_AD2』4r which is presented in this paper.
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2.2. Projecting the direction of steepest descent. In the opti­

mization problem with linear constraints, i.e.,

min

s.t Ax = b,

⑦ 之 0,

the direction of steepest descent is projected into the feasible region. At 

current feasible point ⑦0? the projected steepest direction p into feasible 

region is

P = P(V竹(⑦o)) = [」『 一 AT(A4T)-L4](V竹(⑦o)).

p is computed by the two step procedures :

1. Solve A^y = A V(p(x0).

2. p = \7(少(:r()) — V-

The first step of the above precedures is one of the applications for our 

discussing problem where D is an identity matrix.

2.3. Least square problem with a design matrix _AT. The least

square problem with i.e.,

min W^x — c||,
X

is reduced to the positive definite system;

x = Ac.

Use of the Cholesky factorization to get a solution is often efficient. The 

QR factorization of can also be used since it is more stable where 

the condition number of ?L4T is the square of the condition number of

3. Splitting method of the dense columns
Suppose that the matrix A is a large sparse with some of the number 

of dense columns and have full row rank and that the number of dense 
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columns is small and have been identified. Consider the system of 

equations

AD2Arx = b,

where Z) is a diagonal matrix. Partition the matrix A into

A = [ As AD ] ,

where As and Ad represent the sparse part and the dense part of A 

respectively.

By partitioning the diagonal matrix D into two blocks as

D =
Di 0 

0 D2

where the sizes of Dy and D2 correspond to those of As and AD^ then 

AD can be written as follows:

AD =[ As ] 까 으 = [ ASD1 AdD2 ] .

Then the submatrices AsDi and of AD are still sparse part and 

dense part respectively. Note that

AD2^ = AD(AD)t

(7) = [ ASD1 AdD2 ] [ AsD, AdD2 ]T

= (As」Di)G4요〕i)T + (AdD2)(AdD2)t.

Now we split AdD^ into a sparse matrix having the same number of 

rows but more columns. It satisfies

where

“ ek '

그 으 k

E = ek , kl x I matrix.

_ ek _
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Here I is the number of columns of and = [ 1 1 • • • 1 ] is 

a fc-vector for some constant k. All the columns of AjjD^ is expanded 

into kl new sparse columns. This distributes the column entries of 

AdD<2 into A, so A is related to ApZ)2 and becomes a sparse matrix. 

When 아 is a threshold parameter and any z-th column of』4z)Z)2 is split 

into a set of k columns, each column contains exactly 0 elements of 

z-th column of AdD^ except for the last column in some case. Thus 

k =「》!•

For example, suppose

(8) AdD2 =

Pll P12
P21 P22
P31 P32 
호41 P42 
以 51 P 品2

and Z = 2, 0 = 2.

Then fc = g] = f|] = 3. By the definition of E,

E = —7=
V3

-1 0 -

1 0

1 0

0 1

0 1

_ 0 1 _

and then

Pll 0 0 P12 0 0
P21 0 0 P22 0 0

A = \/3 0 P31 0 0 P32 0
0 P41 0 0 P42 0
0 0 7751 0 0 p52 _

The equality 

is achieved, where A is quite sparse.
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Let

r 日 ]
i。

L = 心 3 ,

. Li_

where Li is (k — 1) x k matrix with the shape such as

" 1 -1 ‘

1 -1 4

1 -1

1슈 =

1 -1

Now, a new matrix G from A and AsDi is defined as

수 As刀 i 八L ° l ’
It can be used to obtain the solution of the original system.

For the example (8), G can be written as

-
0 0 V卽 12 0 0

、/卽  21 0 0 \/3^22 0 0

AsDi 0 V우P31 0 0 \/3p32 0

0 V=P41 0 0 \/3p42 0
G = 0 0 卽 51 0 0 V^P52

1 -1 0 0 0 0

n 0 1 -1 0 0 0
U

0 0 0 1 -1 0

0 0 0 0 1 -1

The following theorem implies that the solution (:r, y)T of the system 

of equations 

(9) 
x bGGt

oy
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represents x as the solution of AD2Arx = b, i.e., x = (AD2AT)~1b,

THEOREM 3.1. G has full row rank if and only if A has full row 

rank. Let (x, y)T be the solution to (9) for G having full row rank. 

Then x = (AD2AT)—仏

Proof. Note that the number of dense column AdD2 is I and A has 

kl columns and n rows. Then G has n + l(k — 1) rows and the column 

operations on G, without effecting the rank of G, can be performed to 

have a same row rank matrix as follows

스 __ AsDi A
G — [ 0 L

" As刀i Ai A2 … A/ " 
Li

= 0 心2.’

. Lt _

where A》= split block of i-th column of - Apply column opera­

tions to G then

” AsDi AdD^ Ai' A』… 八z' ' 
lA

0 0、

. L't J

" AD A； A； • • • '

Li

= 0

_ L't J

where A- is the submatrix of A》by dissecting the first column of A》 

and £■ is obtained from I乃 for the same way. The last matrix has the 

이
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same row rank as that of G and G has full row rank if and only if A or 

AD does since the matrix

「4 ]
I人

is an invertible (k — V)l x kl matrix.

From the definition of G, we obtain

짜 = (T2)(C)
_ f (As刀i)G4sZ)i)t + AAt W\

” 느 LLt ) •

Rewriting the system (9) as

(10) (G4sA)G4sA)T + AAt>: + Wy = b,

U&F x + Ll/y = 0,

we can solve the second system for y first to get

y = — (LLt)—lLArx

since LLT is always invertible. Substitute y into the first system of (10) 

and solve for x. Then x is

= [AsPi(7hA)T +AA끄一

(11) - [AsD^AsD^f + A(I _ LT(LLT)"1L)AT]-1b.

The matrix I — l7{Ll7)~rL is the projection onto the nullspace of L, 

Since for the matrix Li the linear system Liz = 0 gives 之 = ce^ for any 

constant c, the nullspace of L is the n—dimensional space spanned by 
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the n orthonormal vectors;

“ ek ’ “ 0 “ - 0 -

1 0 1 이수 1

y/k ’ 0 0

_ 0 _ _ 0 _ - ek .

From the simple computation, we see that EET is the projection onto 

the nullspace of L which is identical to I — LT(LLT)-1L. Using that 

equality and (7), the equation (11) is reduced to

= [AsD^AsDr)T + A(/ - Lt(LLt)-1L)At]-16

= [AsD^AsDrf + ^EEt^t]~1
= [AsD^AsDrf +

= [AD2Ar]-x6.

□
4. Implementations and Experimental Results

By the theorem 3.1, the expanded linear sparse system

(12) GGt ； ] = :

must be solved to obtain x which is the solution of the original system 

AD2Arx = b.

For the comparison purposes, we implement the direct solver for 

AD2Arx = b using Cholesky factorization and the sparse solver for (12) 

using conjugate gradient with incomplete Cholesky preconditioner. The 

matrix A, D and b are randomly generated with normal distribution. 

The size of A matrices moves in 101 <m< 2010 and 100 < n < 2000.

The codes for the Cholesky solver, DPOTRF and DPOTRS from 

LAPACK in Net Lib, and incomplete Cholesky conjugate gradient codes 

from SLATEC in NetLib were used to solve the original system (1) and 

(12), respectively. The data of A, D and b are generated as CSC-form
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Table 1. Execution Time Comparision

n ndc

Cholesky for

AD2Ary = 0

IC Preconditioning CG for 

=[;] = [:]

Time Optimal theta Time (sec)

100 1 1.12 7 0.10

2 1.13 27 0.13

5 1.21 25 0.26

10 1.26 25 0.56

200 1 10.22 20 0.21

2 10.31 25 0.33

5 10.44 40 0.84

10 10.64 50 1.89

500 1 179.12 40 1.01

2 179.59 50 1.97

5 180.95 105 4.84

10 182.53 110 9.58

700 1 510.80 30 1.60

2 511.74 60 3.83

5 512.80 90 9.55

10 518.34 140 20.04

1000 1 30 3.32

2 60 7.59

5 80 20.74

10 100 44.41

2000 1 50 12.40

2 100 32.60

5 70 96.60

which is sparse data structure for SLATEC. The dense part of A has 

at most 10% density of sparse column for most of the problems. The 

incomplete Cholesky factorization is one of the most efficient precondi­

tioner for iterative methods of solving large sparse symmetric positive 

definite linear systems.

The weakness is the failure of the factorization due to nonpositive 

pivots. Several methods have been suggested to overcome this problem 



158 SEYOUNG OH AND SUN JOO KWON

([5], [6]). To escape this trouble in our problem, the problems that 

do not occur the failure of the factorization are only examined. The 

modified incomplete Cholesky factorization as preconditioner will be 

considered in the future research. All the codes for our test problems 

are derived by using Fortran-77 on HP755/90 workstation.

The codes were tested on >1 which has 100, 200, 500, 700, 1000, 2000 

sparse columns and 1, 2, 5 ,10 dense columns for each case. The num­

ber of row is the same as that of sparse columns. For each case the 

parameter 0 varies in at most 50% of the number of sparse columns. 

That is, each dense column is splitted into 2-50 columns. Table 1 

represents the average execution time(sec) of more than 4 problems for 

each case that A has 100 - 2000 sparse columns and 1, 2, 5 or 10 dense 

columns, ndc is the number of dense columns. Experimentally, in con­

clusion, the sparse solver used splitting method for the relatively dense 

columns is efficient.
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