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Abstract

Real data as web log file tend to be incomplete. But we have to find useful knowledge from these for optimal decision. In web
log data, many useful things which are hyperlink information and web usages of conmnected users may be found. The size of
web data is too huge to use for effective knowledge discovery. To make matters worse, they are very sparse. We overcome this
sparse problem using Markov Chain Monte Carlo method as multiple imputations. This missing value imputation changes spare
web data to complete. Our study may be a useful tool for discovering knowledge from data set with sparseness. The more
sparseness of data in increased, the better performance of MCMC imputation is good. We verified our work by experiments

using UCI machine learning repository data.
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1. Introduction

The web log file contains a rich and dynamic collection of
hyperlink information and web page access and usage
information. It also seems to be so huge for effective data
mining. The size of web log data is very large, but web log
is very sparse. Many web pages in web server are not
accessed by each user. So we have a difficulty for prediction
modeling. It is very difficult to estimate dependency of web
pages in spare web data. An efficient preprocessing approach
is needed for this problem. Using the missing value
imputation by multiple imputation method, the spare data are
changed to perfect for prediction model. This imputation
provides a useful strategy for dealing with data sets with
spare. In this paper, we use MCMC(Markov Chain Monte
Carlo) method for multiple imputation to replace missing data
with estimated data. In our paper, the MCMC method was
presented good prediction result in spare data. And we
verified these results through experiments using UCI machine
learning repository data set[15].

2. Necessity of Sparse Data Cleaning

The sparsity of data as web log file is made by several
reasons[3],[4]. For example, it occurs when all pages of web
server are more than user visited web pages. This is frequent
case in web log data. Therefore, the click stream data of
cleaned web log file is very sparse. Generally, this sparsity is
extreme. So, we have a difficulty of web log analysis, for
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example, web usage mining with web information
recommendation, next web page prediction, and web page
duration time forecasting. The web data with sparsity is not
analyzed by general methods, for example, regression,
multi-layer perceptron(MLP) and others[5]. The MCMC
method as missing value imputation is very useful tool for
sparsity data analysis. In this paper, the elimination of sparse
from sparse data is performed using MCMC as multiple
imputation method.

3. Cleaning using Missing Value Imputation

3.1 Mulitiple imputation

Missing data is a problem in a data sets and frequently
complicates data analysis for scientific investigation. The
development of statistical methods for dealing with data sets
with missing values has been an active area of research in
recent decades. Imputation is a general method for handling
missing data problem. A strategy is single imputation. This
method can be applied to impute a single value for each
missing value. Traditional approaches include case deletion
and mean imputation. In the last decade the main interest has
centered on regression imputation and imputation using
EM(Expectation-Maximization) algorithm. Instead of filling in
a single value for each missing value, Rubin proposed
multiple imputation which replaces each missing value with a
set of plausible values by drawing from the conditional
distribution of the missing data given the observed
data[10],[11]. Multiple imputation is the method of choice for
complex incomplete data problems. Some methods apply only
to special missing data patterns, where others apply to any
other pattern.

Assume that the missing data is missing at random(MAR).
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With a monotone missing data pattern, simple methods has
been proposed, including regression method, prospensity
methods and predictive mean matching for continuous
variables[8],[9],[11]. With an arbitrary or general missing data
pattern, MCMC methods has been suggested. The regression,
predictive mean matching and MCMC methods require
assumptions that the data are from a multivariate normal
distribution, but there is some evidence that the inferences
tend to be robust to minor departures from this
assumption[13].

We briefly review MCMC method since in general the web
log data sets has arbitrary missing patterns. In Bayesian
inference, the posterior probability distribution contains all the
current information about the unknown parameters. Using
Bayes's theorem, the posterior distribution of parameters @ is
computed by

Ay =LA 80
[ nst0n6)d0

where p(316) is often called the likelihood function of &
given y and p(6) is called the prior distribution of 6.

MCMC has been applied as a method for exploring
complicated posterior distribution in Bayesian inference. Let
Y denote the #nxp matrix of complete data. Denote the
observed part of Y by Y, and the missing part by Y ..
so that Y=(Y,, Y, Data augmentation algorithm is
applied to Bayesian inference with missing data by repeating
the following two. steps.

Imputation I-step:

With the estimated mean vector and covariance matrix,
I-step first draws a value of the missing data from a
conditional predictive distribution Y . given Y,

YO~ (Y il ¥ o D) )

Posterior P-step:
The P-step draw a new value of § from the complete data
posterior,

0O~ p(AY o Yy ! 3

Repeating I-step and P-step from a starting value @ %), this
create a Markov chain

(Y("lul’e(1))’(Y(”2u)s’6(2))’... (4)

which converges in stationary distribution (Y ., AY ).
Schafer in [13] called (2) Imputation or I-step and (3) the
Posterior or P-step.

In this study, the posterior mode with a noninformative
prior was computed from the EM algorithm and was used as
the starting value from the chain. After the completion of m
imputation, we computed the MSE.

3.2 Other imputation algorithm

There are many methods in the imputation algorithm. In
_our research, we compared the some imputation methods with
MCMC imputation. The following are the comparative
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methods with proposed MCMC method. These are many used
in data mining tools as SAS E-Miner[16].

Tree imputation: Generally, when missing data take place
in continuous cases, the mean or conditional mean imputation
methods are used. But these imputation methods have the low
predictive accuracy. To overcome the problem tree imputation
model which is nonparametric approach is considered[6].
Suppose the data set is defined by (v, ;¥ D,
(i=1,2, -, n), where p is the dimension of input vector, »
is the size of objects, and ¢ is a target variable. A tree
construction arises from a divide and conquer algorithmic
strategy which recursively divides the data space into two
subregions according to a splitting criterion which aims to
optimize classification or prediction for the cases to be
split[1]. The replacement values of tree imputation are
estimated by analyzing each input as a target, and the
remaining input and rejected variables as predictors. Variables
with a model role of target cannot be used to impute the data.
Because the imputed value for each input variable is based on
the other input variables, this imputation technique may be
more accurate than simply using the variable mean or
conditional mean to replace the missing values[2},[6].

Distribution-based imputation: The replacement values of
distribution-based imputation are calculated based on the
random percentiles of the variable's distribution. In this case,
values are assigned based on the probability distribution of the
non-missing observations. This imputation method typically
does not change the distribution of the data very much[6].

Robust M-Estimators of Location: Tukey's biweight,
Hubers, and Andrew's wave are robust M-estimators of
location. Common estimators such as the sum of squared
residuals can become unstable when using outlier data points
and distort the resulting estimators. M-Estimators try to reduce
the effect of outliers by using substitute functions which are
symmetric, have a unique minimum at zero, and increase less
than standard squared residuals under summation. There are a
wide variety of M-estimators. A suitably chosen M-estimator
will have the two properties. One is robustness of efficiency
in larger samples. The other is resistance to outliers or gross
errors in the data. An estimator has robustness of efficiency
over a range of distributions if its variance is close to the
minimum for each distribution. Robustness of efficiency
guarantees that the estimator is good when repeated samples
are drawn from a distribution that is not known precisely. An
estimator is resistant if it is not changed much by small
groups of outliers or by rounding and grouping errors among
observations. Robustness of efficiency and resistance are the
main reason why you would want to use one of the
M-estimators for imputation. The default tuning constant for
each M-estimator is as follows [6].

Table 1. The default training constant for each M-estimator

Estimator Default tuning constant
Tukey's biweight : 9
Huber 1.5
Andrew's wave 6.283185




4. Experimental Results

In this section, we want to show the experimental results of
proposed MCMC by ABALONE data set from UCI machine
learning repository[15]. The number of instances of data is
4177. The 8 attributes which are length, diameter, height,
whole weight, shucked weight, viscera weight, shell weight,
and rings are abalone's physical state. The abalone data is
complete. For our experiments, we make complete abalone
data to incomplete. The incomplete abalone data have 5%,
10%, 20%, 30%, 40%, 50%, and 60% missing ratios.
Currently, since the tree imputations have been good
preprocessing methods of missing data, we compared the
MCMC multiple imputation with the tree imputations and
other imputation methods. Compared with these imputations,
the MCMC imputation method was better. Our verified results
are shown in following tables and figures. In our experiment,
the MSE of each table is computed as following[14].

MSE,-=_}1J;(J’ ij_y’;j 2 (%)
and
=1 <
MSE= po ;MSE; (6)

where y ; represents the Ah known value of #h variable, y7;
represents the #h predicted value of #h variable and #, is

the number of missing data for #h variable. The s is the
number of imputation. The Mean of each method in the table
is the average of all variable's MSE.
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methods is shown large. This is because the variance of variable
4 is larger than others. We also found that the values of MSE
are increased, as the rates of missing increased. Following table
shows MSE of MCMC method as multiple imputation.

Table 2. MSE of the comparative methods

MSE

04

WEE

04

Proportion of missing

Method Y 5% 10%  20%
Y1 00140 00132 0.0145

Y2 0.0097 0.0094 0.0088

Y3 0.0015 0.0016 0.0014

Andrew's Y4 02656 03047 0.2467
wave Y5 0.0564 0.0508 0.0516

Y6 00118 00118 00119

Y7 00188 00179 0.0186

Mean 0.0540 0.0585 0.0505

Y1 0.0304 00141 00133

Y2 00191 00097 0.0094

Y3 00133 0.0015 0.0016

Huber Y4 0.6208 0.2656 0.3062
Y5 0.1474 0.0566 0.0509

Y6 0.0348 0.0119 0.0119

Y7 0.0502 0.0188 0.0180

Mean 0.1309 0.0540 0.0588

Y1 00333 0.0270 0.0278

Y2 00176 00211 0.0182

Y3 0.0082 00184 0.0117

Y4 07126 0.7472 0.6937

D. Based Ys 0.1336 0.1339 0.1269
Y6 00329 0.029 0.0281

Y7 00512 0.0443 0.0433

Mean 0.1413 0.1459 0.1357

Y1 0.0015 0.0014 0.0023

Y2 0.0008 0.0014 0.0019

Y3 0.0003 0.0004 0.0006

Tre Ya 0.0369 0.0344 0.0361

Y5 0.0051 0.0059 0.0091

Y6 0.0013 0.0015 0.0018

Y7 0.0018 0.0027 0.0030

Mean 0.0068 0.0068 0.0078

o To% ) So%

Fig. 1. MSE plots of comparative methods

The MSEs of comparative methods which are Andrew's wave,
Huber, distribution based method, and tree imputations are
shown in Table 2. Also Fig. 1 shows the MSE plots of
comparative methods about 10% and -20% missing rates. In this
figure, A, D, H, and T represent Andrew's wave, Huber,
distribution based method, and tree imputations, respectively.
From Table 2 and Fig. 1, we know that the tree imputation has
better performance than others. This MSE is lower than other
methods. In variable 4, the difference of MSEs among 4

In Table 3, m is the finite number of imputation data set.
For example, if m is 3 we replace each missing cell with 3
predictive values. The MSE plots of MCMC methods on 5%,
10%, 20%, 30%, 40%, and 50% are shown in Fig. 2, 3 and
4. The MSE values of MCMC methods are very small. Also
we know that all MSE values from variable 1 to variable 7 of
MCMC methods are smaller than comparative methods.

We used another measure of performance which is mean
absolute deviation(MAD). MAD is the average of the absolute
difference between the original(target) value and the predicted
value. This measure can be expressed as

=

1 i .
MAD ;=== 2y ;=5 %
and
_1 &
MAD= po ;MAD,v 8
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where y ; represents the jth original value of sh variable,

v represents the jth predicted value of sth variable and #

is the number of missing data for sh variable. The m is the
number of imputation.

Table 3. MSE of the MCMC method
Proportion of missing
5% 10% 20% 30% 40% S50% 60%
Y1l [0.0006 0.0006 0.0009 0.0010 0.0014 0.0019 0.0021
Y2 [0.0004 0.0004 0.0007 0.0006 0.0010 0.0012 0.0014
Y3 [0.0004 0.0004 0.0005 0.0012 0.0010 0.0005 0.0006
Y4 |0.0033 0.0043 0.0059 0.0074 0.0121 0.0222 0.0226
Y5 [0.0022 0.0026 0.0046 0.0039 0.0060 0.0075 0.0081
Y6 |0.0010 0.0009 0.0012 0.0012 0.0015 0.0019 0.0020
Y7 {0.0012 0.0014 0.0016 0.0018 0.0024 0.0031 0.0033
Mean | 0.0013 0.0015 0.0022 0.0024 0.0036 0.0055 0.0057
Y1 |0.0005 0.0005 0.0008 0.0008 0.0013 0.0017 0.0020
Y2 |0.0004 0.0004 0.0006 0.0006 0.0009 0.0011 0.0013
Y3 |0.0003 0.0003 0.0004 0.0012 0.0010 0.0005 0.0005
Y4 |0.0029 0.0041 0.0054 0.0068 0.0109 0.0212 0.0204
YS {0.0020 0.0025 0.0042 0.0036 0.0055 0.0069 0.0072
Y6 |0.0009 0.0008 0.0011 0.0011 0.0014 0.0017 0.0018
Y7 |0.0010 0.0013 0.0014 0.0016 0.0021 0.0029 0.0030
Mean | 0.0011 0.0014 0.0020 0.0022 0.0033 0.0051 0.0052
Y1 [0.0004 0.0004 0.0007 0.0008 0.0011 0.0015 0.0018
Y2 (0.0004 0.0003 0.0006 0.0005 0.0008 0.0010 0.0012
Y3 [0.0003 0.0003 0.0004 0.0011 0.0010 0.0004 0.0004
Y4 |0.0026 0.0038 0.0050 0.0061 0.0096 0.0198 0.0190
Y5 |0.0018 0.0023 0.0039 0.0033 0.0049 0.0063 0.0067
Y6 |0.0008 0.0008 0.0010 0.0010 0.0012 0.0016 0.0017
Y7 |0.0009 0.0011 0.0013 0.0015 0.0019 0.0027 0.0028
Mean | 0.0010 0.0013 0.0018 0.0020 0.0029 0.0047 0.0048
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Fig. 3. MSE plots of MCMC
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Table 4. MAD of the comparative methods

and 50%)

Table 4 and Table 5 are shown the MADs of comparative
methods and MCMC method, respectively. The Mean of each
method in these tables represents the MAD, that is, the
average of all variables's MAD. From these tables, we also
found that the MADs of MCMC method are smaller than
. others. According to this result, the imputation method using
MCMC approach has a good performance. We know that the
cleaning performance of sparse data using the MCMC method
is better than the general comparative methods. So, the
MCMC method as multiple imputation can be used for
cleaning sparse data which is web log file.
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Fig. 2. MSE plots of MCMC methods: (5% and 10%)
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Proportion of missing

Method Y 5% 10%  20%
Y1 00934 00923  0.0982

Y2 00785 00797 0.0758

Y3 00310 00315 00312

Andrew's Y4 04296 04434 03884
wave Y5 0.1924 0.1751 0.1882
Y6 0.0869 0.0865 0.0882

Y7 01118 0.1081 0.1127

Mean 0.1462 0.1452  0.1404

Y1 00931 00923 0.0982

Y2 00781 00792 00754

Y3 00310 00317 00312

Huber Y4 04286 04436 03885
Ys 01928 0.1749 0.1880

Y6 0.0868 00864 0.0879

Y7 01118 0.1082 0.1127

Mean 0.1460 0.1452  0.1403

Y1 0.1448  0.1341 0.1350

Y2 0.1060 0.1147 0.1082

Y3 00467 00592 0.0521

Y4 06550 0.6888  0.6684

D. Based Y5 02869 02852 02837
Y6 01389 0.1355 0.1296

Y7 01722 0.1611 0.1666

Mean 02215 02255 0.2205




Table 4. MAD of the comparative methods
Proportion of missing
5% 10% 20%

Y1 0.0253 0.0291 0.0348
Y2 0.0222 0.0260 0.0315
Y3 0.0119 0.0143 0.0153
Y4 0.1369 0.1323 0.1412
Y5 0.0552 0.0553 0.0711
Y6 0.0270  0.0282  0.0323
Y7 0.0311 0.0365 0.0406
Mean 0.0442 0.0460 0.0524

Method Y

Tree

Table 5. MAD of the MCMC method

Proportion of missing
5% 10% 20% 30% 40% S50% 60%
Y1 |0.0182 0.0175 0.0216 0.0224 0.0265 0.0293 0.0329
Y2 (0.0142 0.0148 0.0181 0.0179 0.0214 0.0240 0.0259
Y3 |0.0155 0.0145 0.0155 0.0144 0.0143 0.0172 0.0190
Y4 (0.0364 0.0415 0.0496 0.0596 0.0717 0.0876 0.1004
Y5 (0.0318 0.0343 0.0429 0.0442 0.0527 0.0582 0.0628
Y6 (0.0223 0.0215 0.0250 0.0258 0.0276 0.0302 0.0324
Y7 [0.0237 0.0256 0.0276 0.0292 0.0335 0.0369 0.0404
Mean |0.0232 0.0242 0.0286 0.0305 0.0354 0.0405 0.0443
Y1 |0.0168 0.0166 0.0201 0.0210 0.0249 0.0275 0.0311
Y2 10.0135 0.0140 0.0165 0.0167 0.0501 0.0225 0.0245
Y3 |0.0139 0.0133 0.0138 0.0138 0.0133 0.0156 0.0171
Y4 ]0.0333 0.0390 0.0462 0.0547 0.0665 0.0823 0.0943
Y5 (0.0296 0.0329 0.0399 0.0416 0.0495 0.0544 0.0584
Y6 (0.0212 0.0215 0.0240 0.0241 0.0259 0.0282 0.0305
Y7 10.0210 0.0237 0.0254 0.0275 0.0304 0.0341 0.0377
Mean |0.0213 -0.0230 0.0266 0.0285 0.0372 0.0378 0.0419
Y1 |0.0158 0.0158 0.0188 0.0200 0.0236 0.0262 0.0296
Y2 |0.0128 0.0133 0.0156 0.0161 0.0190 0.0214 0.0235
Y3 [0.0126 0.0123 0.0126 0.0131 0.0126 0.0141 0.0153
Y4 |0.0306 0.0366 0.0438 0.0502 0.0612 0.0773 0.0892
YS (0.0267 0.0305 0.0378 0.0391 0.0462 0.0507 0.0555
Y6 |0.0188 0.0191 0.0219 0.0553 0.0243 0.0263 0.0290
Y7 |0.0196 0.0215 0.0237 0.0258 0.0280 0.0322 0.0350
Mean |0.0196 0.0213 0.0249 0.0314 0.0307 0.0355 0.0396

m Y

10

5. Conclusion

In this paper, the MCMC imputation approach for
sparseness elimination of very sparse data was proposed. This
is based on multiple imputation theory. The advantage of this
method is to change sparse data into complete. It is
impossible that general preprocessing techmiques can be used
for sparse data cleaning. Our research will support knowledge
discovery processes. Our future work is to develop the method
of hybrid MCMC model to upgrade performance of sparse
data cleaning.
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