
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, Aug. 2014                                               2851 
Copyright ⓒ 2014 KSII 

Distributed Video Compressive Sensing 
Reconstruction by Adaptive PCA Sparse 

Basis and Nonlocal Similarity 
 

WU Minghu1,2, ZHU Xiuchang3 
1 School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China 

2Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of 
technology, Wuhan, China 

[e-mail: wuxx1005@mail.hbut.edu.cn] 
3Jiangsu Province Key Lab on Image Processing & Image Communication, Nanjing University of Posts and 

Telecommunications, Nanjing, China 
[e-mail: zhuxc@njupt.edu.cn] 

 
Received January 21, 2014; revised May 2, 2014; accepted June 18, 2014; published August 29, 2014 

 
 

Abstract 
 

To improve the rate-distortion performance of distributed video compressive sensing (DVCS), 
the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct 
the video signal in this paper. Due to the lack of motion information between frames and the 
appearance of some noises in the reference frames, the sparse dictionary, which is constructed 
using the examples directly extracted from the reference frames, has already not better 
obtained the sparse representation of the interpolated block. This paper proposes a method to 
construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using 
the motion information between frames, and then the principle components analysis (PCA) is 
used to compute some significant principle components of data matrix. Finally, the sparse 
dictionary is constructed by these significant principle components. The merit of the proposed 
sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal 
characteristics, but also has ability to suppress noises. Besides, considering that the sparse 
priors cannot preserve the edges and textures of video frames well, the nonlocal similarity 
regularization term has also been introduced into reconstruction model. Experimental results 
show that the proposed algorithm can improve the objective and subjective quality of video 
frame, and achieve the better rate-distortion performance of DVCS system at the cost of a 
certain computational complexity. 
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1. Introduction 

The basic idea of Compressive Sensing (CS) is to sample the signal by the way of direct 
dimensionality reduction while compressing the signal and then recover the original signal by 
exploiting the sparse prior of signal. Due to its ability to sample signal at the sub-Nyquist rate, 
the theory of CS has been widely applied into the various fields of image and video processing 
[1],[2]. The measurement approach of CS is realized by the linear inner-product and thus it has 
a low computational complexity, however, it requires the high computational costs to 
non-linearly reconstruct signal. This feature of light coding and heavy decoding makes CS 
theory easily be combined into the Distributed Video Coding (DVC) [3], which produces a 
new video compression technology -- Distributed Video Compressive Sensing (DVCS) 
[4]-[6]. 

In the DVCS system, the primary problem is the requirement of the huge memory burden in 
CS measurement. Currently there are two schemes to effectively resolve this problem. The 
first method is to use the Structurally Radom Matrices (SRMs) [7],[8] to achieve the 
measurement data. The SRMs use the fast orthogonal transformation to realize CS 
measurement, and thus avoid to construct the measurement matrix requiring lots of memory. 
The another method is to perform CS measurement by the Block Compressed Sensing (BCS) 
[9]. This approach can not only realize a low-memory CS measurement but also measure and 
transmit the video block one by one, and therefore it is very appropriate for the real-time 
applications and widely used in various DVCS systems [10]-[11]. The DVCS firstly divides 
the video stream into the key frames and non-key frames. The key frame can realize codec by 
either the traditional video coding technology (e.g., H.264) or measuring video frame at a 
higher measurement rate and using still-image CS reconstruction algorithm [12]-[14] to 
recover the original video frame. Due to the low measurement rate of non-key frames, its 
reconstruction requires to combine intra and inter frame correlation. Ref. [5] uses the previous 
and following frames to interpolate the Side Information (SI) of non-key frame by motion 
compensation and then regards the SI as the initial solution of GPSR algorithm [15] to 
construct the final interpolated frame. Ref. [6] uses the temporal-neighboring blocks to 
construct the sparse dictionary of each interpolated block in the non-key frame and then 
performs the appropriate minimum l1-norm algorithm to predict the SI, and finally 
reconstructs the residual frame between the SI and original frame by using the still-image CS 
reconstruction algorithm. Ref. [16] firstly uses CS reconstruction algorithm to independently 
perform intra-frame recovery and then utilizes the previous and following frames to predict 
the SI by motion estimation and motion compensation, and finally recovers the residual. Ref. 
[17] uses the Multiple Hypotheses (MH) concept in the traditional video coding to construct 
the candidate set of each interpolated block, and then replaces the sparse regularization item in 
the way of l1-norm with the Tikhonov regularization item in the way of l2-norm to predict the 
SI of non-key frame, and this method can effectively improve the predictive precision and 
reconstruction speed. 

Although the above methods can obtain the better reconstructed quality of non-key frame, 
there are still the two defects: (a) the sparse dictionary cannot adaptively change in terms of the 
reconstructed quality of reference frame and remove the noise; (b) they only use the sparse 
prior and overlook the other prior knowledge of video frame. Aim to the first defect, an 
adaptive construction of sparse dictionary is proposed in this paper. Firstly, it uses the motion 
information between frames to find the best-matching block in reference frames of each 
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interpolated block and extracts its temporal-neighboring blocks to produce the data matrix. 
Due to the noises existing in the reference frames, the Principle Components Analysis (PCA) 
is then used to compute the significant principle components, and finally these significant 
principle components are used to construct the sparse dictionary. The PCA-based sparse 
dictionary has a big correlation with the interpolated block, and therefore it can exploit the 
sparse property of non-key frame to improve the accuracy of reconstruction. For the second 
defect, this paper uses the Non-local Similarity (NL) of video frame to model the 
regularization item and combines the sparse prior knowledge to generate the joint CS 
reconstruction model, and finally an appropriate reconstruction algorithm is designed to solve 
the joint model. Since the NL is help for preserving edge details and suppressing noises, the 
proposed joint model can improve the performance of CS reconstruction algorithm. 
Experimental results show that the proposed joint reconstruction algorithm can effectively 
improve the rate-distortion performance of DVCS system and achieve the better objective and 
subjective quality of reconstructed non-key frame. 

2. Framework of Proposed DVCS System 
The framework of proposed DVCS system is shown in Fig. 1. The original video stream is 
firstly divided into key frames and non-key frames, and they are measured by the BCS 
proposed by Ref. [9]. An Ic×Ir video frame xt with N = Ic×Ir pixels in total is divided into L 
small blocks with size of B×B. Let xt,n represents the vectorized signal of the n-th block though 
raster scanning, and each block xt,n is measured by using the same Gaussian random 
measurement matrix ΦB, and the corresponding output CS vector yt,n with the length MB can be 
obtained. The above process can be described as 
 

, B , ,  1, 2, ,t n t n n L= ⋅ =y Φ x  .                                               (1) 

 
The measurement rate is defined as S = MB/B2. When the non-key frame is reconstructed 
jointly, the reconstruction quality of previous and following frame can affect seriously the 
performance of joint reconstruction model. Therefore, the measurement rate SK of key frame 
should be higher than the measurement rate SNK of non-key frame. The high measurement rate 
of key frame guarantees also the better reconstruction quality by only using the still-image CS 
reconstruction algorithm to independently reconstruct key frame, and therefore the key frame 
is also called as I frame. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.  Framework of proposed DVCS system 
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Since the non-key frame is measured at a low measurement rate, the sufficient employment 
of inter-frames and spatial correlation can just guarantee the high quality of reconstructed 
non-key frame. If the previous key frame is only used, then the current non-key frame is called 
as P frame. If the previous and following frame are both used, then the current non-key frame 
is called as B frame. The adaptive PCA sparse dictionary and non-local similarity can be 
generated by using the neighboring reference frames and the current non-key frame, and then 
they are used to construct joint reconstruction model, and then the corresponding algorithm is 
performed to solve the SI xSI of current non-key frame. To further improve the reconstruction 
quality of non-key frame, the residual between SI and original frame is reconstructed , and the 
steps are described as follows,  

Step 1) Initialization: xt
(0) = xSI, the initial iteration k is set to 0, the maximum number 

iterations maxiter is set to 5. 
Step 2) The CS measurement of residual between SI and original frame can be calculated as 

 
( ) ( ) ( )

, , B , B , , B ,( ) ,  1, 2, ,k k k
r n t n t n t n t n t n n L= − ⋅ = − = =y y Φ x Φ x x Φ r  .                  (2) 

 
Step 3) The residual frame rt,n

(k) is computed by using BCS-SPL-DCT algorithm proposed 
by Ref. [13], and the k+1 iteration solution xt

(k+1) can be get as follows, 
 

( 1) ( ) ( )k k k
t t t

+ = +x x r  .                                                  (3) 
 

Step 4) k = k+1, if k ≤ maxiter and ||rt,n
(k)||2 ≥ 10-4·N, then go back to Step 2) and continue to 

the process of iteration, otherwise stopping the iteration. 

3. Proposed Joint CS Reconstruction 

3.1 Construction of Adaptive PCA Sparse Dictionary 
Since the statistic characteristic of video frame is non-stationary, there is not the best fixed 
sparse dictionary (e.g., DCT dictionary, wavelet dictionary, etc.). To exploit the sparse 
property of video frame, the adaptive sparse dictionary correlated with the content of video 
frame should be constructed. Ref. [6] and Ref. [7] use directly the temporal-neighboring 
blocks to construct sparse dictionary, however, although this dictionary can adaptively be 
adjusted with the variational  statistic characteristic of video frame, it cannot always keep the 
high correlation with the interpolated block. The main reasons of this problem have the 
following two points: (a) the motion information between frames; (b) the reconstructed key 
frames contain some noises. To overcome the above defects, we firstly use the CS 
measurement of the interpolated block to do motion estimation and find its best matching 
block in the reference frame, and then the spatial neighboring blocks of the best matching 
block in the reference frame are extracted to generate the data matrix. However, the data 
matrix contains a certain noises, and therefore the PCA is used to compute the principle 
components of data matrix, and then we select the significant principle components to 
construct the final sparse dictionary to suppress the noises. Take the situation of P frame as a 
example, the concrete construction steps of proposed sparse dictionary are described as 
follows: 

Step 1) Suppose the CS measurement of the interpolated block xt,n is yt,n. Due to the 
Restricted Isometry Property (RIP) [18] of Gaussian measurement matrix, the matching error 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014                                          2855 

between xt,n and the candidate matching block xc,j retains approximately unchanged, i.e.,  
 

, , , B ,2 2t n c j t n c j− ≈ −x x y Φ x .                                            (4) 

 
Therefore, the block-matching based motion estimation can be performed in the measurement 
domain as follows: 
 

, 1
b, , B , 2

arg min
c j

n t n c j∈
= −

x S
x y Φ x ,                                          (5) 

 
where S1 is the search window with size of 2S1×2S1. As shown in Fig. 2, we extract the blocks 
xp,k with size of B×B pixel-by-pixel in the search window with the centre xb,n, and then each 
extracted block is converted into the vector by raster scanning, and all extracted blocks are 
combinend into the data matrix Xp = [xp,1, xp,2, ..., xp,K] in which K = 2S2×2S2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 2) Each block xp,k in data matrix Xp contains noises, and thus it is not the best scheme 
that Xp is directly regarded as the sparse dictionary. The PCA can compute the orthogonal 
transformation matrix P which can remove the redundant information between pixels in xp,k. If 
P is used to transform image blocks, and the useful information and noises of Xp can be 
effectively divided. Firstly, the covariance matrix Ωp with size of d×d (d = B2) corresponding 
to Xp can be calculated as follows,  
 

T T
p p, p, p, p,

1

1 K

k k k k
kK =

= −∑Ω x x x x ,                                            (6) 

 

 
Fig. 2.  Illustration of data matrix Xp construction 
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p, p,
1

1 
K

k k
kK =

= ∑x x ,                                                     (7) 

 
and then we can compute d eigenvalues η 1 ≥  η 2 ≥  … ≥  η d of the covariance matrix Ωp and 
their corresponding normalized eigenvectors (principle components) p1, p2, …, pd, and finally 
we can construct the orthogonal transformation matrix P = [p1, p2, …, pd]. 

Step 3) To effectively divide noises and useful information in the data matrix Xp, we should 
be to find the sparse dictionary Dn which can sparsely represent all blocks in Xp as far as 
possible, i.e., the Dn should satisfy the following formula, 
 

2

p 1F,
ˆˆ( , ) arg min{ }

n n
n n n n nµ= − +

D Λ
D Λ X D Λ Λ ,                         (8) 

 
where Ʌn is coefficient matrix of Xp, ||·||F is Frobenius norm. The r significant principle 
components in P are used to generate the dictionary Dn,r = [p1, p2, …, pr], and the coefficient 
matrix Ʌn can be simply calculated by Ʌn,r = Dn,r

T·Xp. The reconstruction error ||Xp - Dn,rɅn,r||F2 
in Eq. (8) will decrease as r increases, and the item ||Ʌn,r||1 is otherwise increasing. Therefore, 
the best value r* of r can be selected by the following formula, 
 

2*
p , , , 1

arg min{ }n r n r n rFr
r µ= − +X D Λ Λ .                           (9) 

 
Finally, the sparse dictionary Dn = [p1, p2, …, pr*] of the interpolated block xt,n can be achieved. 

Step 4) The CS reconstruction model can be constructed by using the Dn from PCA training 
as follows, 

 

,

2

, , , 1 ,2 1
ˆ arg min{ }

t n
t n t n n t n t nλ= − +

α
α y D α α                         (10) 

 
The sparse representation αt,n of xt,n is obtained by using GPSR algorithm to solve Eq. (10), 
and finally the interpolated block is reconstructed by 
 

SI, ,ˆ ˆn n t n= ⋅x D α .                                             (11) 
 

3.2 Non-local Similarity Regularization Item 
Although the adaptive PCA sparse dictionary can exploit the sparse property of video frame, it 
cannot preserve edge and texture features well since the edge and texture features have a low 
sparse degree. Fig. 3 shows that the reconstructed Foreman 13-th frame (P situation) when the 
measurement rate SNK is 0.1 and block size B is 16. It can be observed that edge and texture 
regions appear the obvious blurring and blocking artifacts. Therefore, to retain the clear edge 
and texture details, in addition to using the sparse priori knowledge, the other priori knowledge 
requires also to be added. 

For image and video, the pixel is not isolated but jointly describe the image features with its 
neighboring pixels. The window with center pixel (it is also called as patch) can usually 
present details of a pixel. The center of patch is corresponding to a pixel of image, then an 
image can be represented by the over-complete set composed by all patches. In the edge and 
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texture regions usually exist lots of periodical repetitive patterns and they have a high 
self-similarity, and therefore the patches locating at the different positions have a strong 
similarity. This property of image and video is called as non-local similarity [19]-[21]. The 
non-local similarity of video presents that patches have not only spatial correlation but also 
temporal correlation. As shown in Fig. 4, the patch labeled by red color and the patch labeled 
by blue color can find the similar patches in spatial and temporal neighboring regions. The 
non-local similarity is very helpful to improve the quality of reconstructed frame, especially 
for preserving edge and texture structure features, and therefore this property can become a 
priori knowledge to mix into Eq. (10) and effectively remove the blurring and blocking 
artifacts in edge and texture regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Take the P situation as an example, the following content describes the construction of 

non-local similarity regularization item in details. Any pixel in xt,n is denoted as xt,n(i), i = 1,2, 
…,d, and xt,n(i) denotes the patch whose center and radius are xt,n(i) and b respectively. For 
each patch xt,n(i), we find its similar patches in the current block xt,n and the best-matching 
block xb,n in the previous frame, and each patch xt,n

m(i) should satisfy ei
m = || xt,n(i) -xt,n

m(i)||2 ≤ t, 
therefore xt,n(i) can be predicted by  
 

                                                     
                                     (a) Original frame                  (b) Reconstructed frame, PSNR = 34.13 dB 
Fig. 3  Comparison between original frame and the reconstructed frame from adaptive PCA sparse 

dictionary for Foreman 13-th frame. 

 
Fig. 4.  Non-local similarity of video 
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, ,
1

( ) ( )
M

m m
t n i t n i

m
x i x i nβ

=

= +∑ ,                                               (12) 

 

1

exp( / )

exp( / )

m
m i
i M

m
i

m

e c

e c
β

=

−
=

−∑
,                                                  (13) 

 
where ni is the additional noise item. Suppose βi is the vector containing all elements βi

m, 
xt,n

m(i) corresponding to βi
m can be generated as gi, and thus Eq. (12) can be equal to 

 
T

, ( )t n i i ix i n= ⋅ +β g .                                                    (14) 
 
Considering the non-local similarity of video, the predictive error ||xt,n(i)- βi

T·gi||2 should be 
smaller, and thus it can be regarded as the regularization item to mix Eq.(10) as follows, 
 

,

22 T
, , , 1 , 2 ,2 1 2

1

ˆ arg min{ ( ) }
t n

d

t n t n n t n t n t n i i
i

x iλ λ
=

= − + + − ⋅∑α
α y D α α β g ,          (15) 

 
where λ2 is the regularization factor used to balance the non-local similarity item. Eq. (15) can 
be equal to 
 

,

2 2

, , , 1 , 2 ,1 , ,2 b,2 1 2
ˆ arg min{ ( )

t n
t n t n n t n t n n n t n n nλ λ= − + + − −

α
α y D α α I H D α H x ,       (16) 

 
where I is the identify matrix, Hn,1 and Hn,2 satisfy 
 

, , ,
,1

,   ( ) & ( )
( , )

0   ,   otherwise

m m m
i t n i t n t n

n

x i x i
i m

β ∈ ∈= 


g x
H ,                          (17) 

 

, , b,
,2

,   ( ) & ( )
( , )

0   ,   otherwise

m m m
i t n i t n n

n

x i x i
i m

β ∈ ∈= 


g x
H .                         (18) 

To solve Eq. (16), it can be further simplified as the following l1-l2 norm minimum model, 
 

,

2

, , , 1 ,2 1
ˆ arg min{ }

t n
t n t n n n t n t nλ= − +

α
α y Φ D α α ,                      (19) 

 
where 
 

 
,

,
2 ,2 b,

       t n

t n
n nλ

 
=  
  

y
y

H x
 , 

B

2 ,1

       

( )n
nλ

 
=  

−  

Φ
Φ

I H
                     (20) 
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Since the construction of Hn,1 and Hn,2 requires the interpolated block xt,n, however xt,n is 
unavailable in the process of reconstruction. Therefore, Hn,1 and Hn,2 will be updated using the 
iteration solution in the process of solving Eq. (19). The steps of solving Eq. (19) are described 
as follows, 

Step 1) Initialization: 
a) the initial solution xt

(0) is firstly acquired by using Eq. (10) and Eq. (11); 
b) H(0)

n,1 and H(0)
n,2 are constructed by using the initial solution xt

(0) in term of Eq. (17) and 
Eq. (18), and then we use them to generate ỹ(0)

t,n and Φ(0)
n; 

c) the number of iteration k is set to 0, and the maximum number of iteration maxiter is set 
to 10. 

Step 2) Combining ỹ(k)
t,n and Φ(k)

n into Eq. (19), and GPSR algorithm is used to compute the 
sparse representation coefficients α(k)

t,n, and then we use Eq. (11) to obtain the (k+1)-th 
iteration solution x(k+1)

t,n of each block. Finally, all the interpolated blocks are combined into 
the estimation xt

(k+1) of current frame. 
Step 3) k = k+1, if k ≤ maxiter and || xt

(k+1)- xt
(k)||2 ≥ 10-4·N, then H(k)

n,1, H(k)
n,2, ỹ(k)

t,n and Φ(k)
n 

can be updated as H(k+1)
n,1, H(k+1)

n,2、ỹ(k+1)
t,n and Φ(k+1)

n by using xt
(k+1) and the iteration goes 

back to Step 2), otherwise the algorithm will be stopped. 
The predict frame xSI can be obtained by using CS joint reconstruction after the above steps 

perform several iterations, and finally the reconstruction of residual frame is performed to 
achieve final non-key reconstructed frame ˆ tx . 

4. Simulation results and analysis 
The proposed algorithm is evaluated by using the first 61 frames of four test sequences with 
CIF formant including Foreman, Mobile, Bus and News. The key frame is the odd frame (I 
frame), and the non-key frame is the even frame (P or B frame). In terms of the style of 
non-key frame, the proposed algorithm is performed under the two different predictive model, 
i.e., I-P-I model and I-B-I model. The key frame is independently reconstructed by the 
MH-BCS-SPL algorithm proposed by Ref. [14], and the non-key frame is reconstructed by the 
proposed algorithm and the four compared algorithms proposed by Ref. [5], Ref. [6], Ref. [16] 
and Ref. [17] respectively. The proposed algorithm is divided into two parts to do the 
comparison experiments: the algorithm uses only adaptive PCA sparse dictionary (i.e., 
reconstruction model (10)), and it is named as APCA; the algorithm uses adaptive PCA sparse 
dictionary and non-local similarity regularization item (i.e., reconstruction model (16)), and it 
is named as APCA-NL. The block size B in all algorithms is set to 16, the measurement rate SK 
of key frame is set to 0.7, the range of the measurement rate SNK of key frame is [0.1, 0.5]. The 
parameter setting of proposed algorithm is as follows: the radiuses S1 and S2 of search window 
are both set to B; the radius b of patch is set to 3; the threshold t selecting patch is set to 20; the 
regularization factors λ1 and λ2 are set to 0.2 and 0.5/k respectively; the other parameter c is 10. 

The objective quality of reconstructed frame is evaluated by using the Peak Signal-to-Noise 
Ratio (PSNR) and the Structural Similarity (SSIM) [22], and the reconstruction time reveals 
the computational complexity. The hardware platform of experiments is a PC with 3.20 GHz 
CPU and 8 GB RAM, and the software platform is the MATLAB 7.6 under the system 
Windows 7 64 bits. 

Table 1 presents the average PSNR and SSIM of all reconstructed non-key frames at the 
different measurement rate when the predictive model is I-P-I. It can be observed that the 
proposed algorithms APCA and APCA-NL have the higher PSNR and SSIM than the other 
compared algorithm at any measurement rate. Comparing APCA algorithm with APCA-NL 
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algorithm , it can be seen that the performance of APCA-NL algorithm outperforms the APCA 
algorithm at the high measurement rate (SNK is 0.4 or 0.5), e.g., when SNK is 0.5, the APCA-NL 
algorithm obtains the PSNR gain 2.09 dB and SSIM gain 0.0058 than APCA algorithm for all 
test sequences, and but APCA-NL algorithm acquires a little performance improvement at the 
low measurement rate since the inaccurate motion estimation in measurement domain and lots 
of noises in the initial solution result in the fact that the added regularization item cannot better 
describe the non-local similarity of video. Besides, since the edge and texture regions of 
Mobile and Bus sequences have the complex structural features and do not contain lots of 
periodical predictive patterns, and their non-local similarity is low, which causes that 
APCA-NL algorithm cannot effectively improve performance for Mobile and Bus sequences 
in the basis of APCA algorithm and even degrades the quality of the reconstructed frame. Fig. 
5 shows the subjective visual quality of the reconstructed Foreman 8-th frame for various 
algorithm when SNK is 0.3. It can be seen that the proposed algorithm can remove the blurring 
and blocking artifacts around lap, and the better subjective visual quality is obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Average PSNR (dB) and SSIM of test sequences for the proposed and existing algorithms 
under I-P-I Model 

Squence Reconstruction Algorithm 
[5] [6] [16] [17] APCA APCA-NL 

                   SNK = 0.1 
Foreman 26.25, 0.7609 32.86, 0.8892 31.83, 0.8926 34.60, 0.9270 35.06, 0.9153 35.10, 0.9153 
Mobile 17.52, 0.3764 22.52, 0.7365 23.04, 0.7900 23.90, 0.8016 24.15, 0.8020 24.13, 0.8016 

Bus 20.23, 0.5116 23.98, 0.7542 20.57, 0.5896 26.10, 0.8461 26.96, 0.8307 26.98, 0.8308 
News 22.74, 0.7454 35.21, 0.9516 33.47, 0.9606 37.08, 0.9718 37.91, 0.9711 37.96, 0.9711 
Avg. 21.69, 0.5986 28.64, 0.8329 27.22, 0.8082 30.42, 0.8866 31.02, 0.8798 31.04, 0.8797 

                  SNK = 0.2 
Foreman 29.04, 0.8275 34.10, 0.8992 34.64, 0.9266 36.64, 0.8465 37.00, 0.9360 37.42, 0.9377 
Mobile 19.04, 0.4897 24.74, 0.7899 25.64, 0.8527 26.37, 0.8657 26.66, 0.8639 26.69, 0.8633 

Bus 22.26, 0.6366 26.07, 0.8062 25.08, 0.8129 28.58, 0.9032 29.66, 0.8906 29.91, 0.8922 
News 25.98, 0.8333 36.59, 0.9531 36.52, 0.9727 38.43, 0.9770 39.40, 0.9770 39.79, 0.9776 
Avg. 24.09, 0.6968 30.38, 08621 30.47, 08912 32.51, 08981 33.18, 09169 33.45, 0.9177 

                   SNK = 0.3 
Foreman 31.28, 0.8703 35.26, 0.9116 36.39, 0.9446 37.79, 0.9561 39.00, 0.9480 39.15, 0.9520 
Mobile 20.41, 0.5774 25.90, 0.8123 27.60, 0.8884 27.92, 0.8657 29.52, 0.8920 28.40, 0.8917 

Bus 23.97, 0.7215 27.63, 0.8382 28.86, 0.9100 30.33, 0.9032 32.69, 0.9199 32.19, 0.9238 
News 28.22, 0.8807 38.04, 0.9598 38.38, 0.9779 39.14, 0.9770 41.38, 0.9802 41.73, 0.9817 
Avg. 25.97, 0.7625 31.71, 0.8805 32.81, 0.9302 33.80, 0.9255 35.65, 0.9350 35.37, 0.9373 

                   SNK = 0.4 
Foreman 33.12, 0.8993 36.48, 0.9259 37.74, 0.9562 38.53, 0.9620 38.95, 0.9557 40.59, 0.9619 
Mobile 21.73, 0.6499 27.13, 0.8367 28.97, 0.9084 29.08, 0.9150 29.52, 0.9106 29.87, 0.9111 

Bus 25.68, 0.7889 29.25, 0.8703 31.41, 0.9402 31.66, 0.9460 32.69, 0.9362 34.15, 0.9425 
News 30.65, 0.9144 39.60, 0.9678 39.22, 0.9806 39.54, 0.9815 41.38, 0.9827 43.33, 0.9851 
Avg. 27.80, 0.8131 33.12, 0.9002 34.34, 0.9464 34.70, 0.9511 35.64, 0.9463 36.99, 0.9502 

                   SNK = 0.5 
Foreman 34.93, 0.9234 37.81, 0.9402 38.97, 0.9650 39.10, 0.9665 39.57, 0.9617 41.94, 0.9700 
Mobile 23.18, 0.7135 28.44, 0.8616 30.20, 0.9235 30.08, 0.9294 30.67, 0.9255 31.48, 0.9277 

Bus 27.40, 0.8412 30.94, 0.8997 33.35, 0.9583 32.79, 0.9570 33.69, 0.9484 36.18, 0.9574 
News 32.85, 0.9388 41.27, 0.9754 39.78, 0.9826 39.83, 0.9827 41.86, 0.9845 44.54, 0.9879 
Avg. 29.59, 0.8542 34.62, 0.9192 35.58, 0.9573 35.45, 0.9589 36.45, 0.9550 38.54, 0.9608 
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Table 2 presents the average PSNR and SSIM of all reconstructed non-key frames at the 

different measurement rate when the predictive model is I-B-I. Firstly, when compared with  
I-P-I model, the reconstructed quality of all test sequences is effectively improved, and this is 
because that the situation of B frame uses not only the information on the previous 
reconstructed frame but also performs the information on the following reconstructed frame. 
The performance variances of different algorithms are similar to the those of I-P-I model, the 
performance of proposed algorithms APCA and APCA-NL outperforms the other compared 
algorithm, and the APCA-NL algorithm can effectively improve the quality of reconstructed 
video frame at the high measurement rate. Fig. 6 shows the subjective quality of the Mobile 
4-th frame for various algorithms, and it can be seen that the proposed algorithms obtain the 
better subjective visual quality. 

Table 3 presents the average reconstruction time (s/frame) of various algorithms. It can be 
observed that the reconstruction time under I-P-I model is lower than that of I-B-I model, 
which presents that the reconstructed quality is improved at the cost of the increasing 

       
            （a）Ref. [5]                                 （b）Ref. [6]                          （c）Ref. [16]  
              PSNR = 31.90 dB                         PSNR = 34.70dB                     PSNR = 35.72dB 
              SSIM = 0.8833                             SSIM = 0.8912                         SSIM = 0.9364 

    
           （d）Ref. [17]                                  （e）APCA                           （f）APCA-NL 
             PSNR = 37.22 dB                            PSNR = 37.42 dB                  PSNR = 38.48 dB 
             SSIM = 0.9397                                SSIM = 0.9446                       SSIM = 0.9502 

Fig. 5.  When SNK is 0.3, the comparison of subjective visual quality on Foreman 8-th frame for 
various algorithms under I-P-I model. 
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computational complexity under I-B-I model. Besides, the proposed two algorithms increase 
the computational complexity and obtain the improvement of reconstructed quality, which 
presents that the better performance of proposed algorithms are achieved at the cost of the high 
computational complexity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Average PSNR (dB) and SSIM of test sequences for the proposed and existing algorithms 
under I-B-I Model 

Squence Reconstruction Algorithm 
[5] [6] [16] [17] APCA APCA-NL 

                   SNK = 0.1 
Foreman 28.08, 0.8263 34.12, 0.9099 34.17, 0.9258 36.11, 0.9435 36.27, 0.9306 36.27, 0.9305 
Mobile 17.81, 0.4072 24.19, 0.8013 26.38, 0.8799 25.67, 0.8632 25.89, 0.8610 25.88, 0.8607 

Bus 20.50, 0.5571 25.75, 0.8198 21.78, 0.6564 26.41, 0.8536 27.29, 0.8409 27.29, 0.8411 
News 23.73, 0.8090 36.64, 0.9611 36.70, 0.9735 37.93, 0.9772 38.99, 0.9766 39.00, 0.9766 
Avg. 22.53, 0.6499 30.18, 0.8730 29.76, 0.8589 31.53, 0.9093 32.11, 0.9023 32.11, 0.9022 

                   SNK = 0.2 
Foreman 31.88, 0.8925 35.61, 0.9225 36.37, 0.9472 38.09, 0.9588 38.22, 0.9484 38.49, 0.9493 
Mobile 20.34, 0.6018 26.82, 0.8485 28.33, 0.9077 28.30, 0.9100 28.59, 0.9074 28.58, 0.9068 

Bus 24.04, 0.7510 28.22, 0.8661 26.59, 0.8600 29.94, 0.9073 30.19, 0.8982 30.37, 0.8998 
News 27.93, 0.9034 38.01, 0.9633 38.48, 0.9787 39.40, 0.9806 40.03, 0.9802 40.33, 0.9805 
Avg. 26.05, 0.7872 32.17, 0.9001 32.44, 0.9234 33.93, 0.9392 34.26, 0.9336 34.44, 09341 

                   SNK = 0.3 
Foreman 33.91, 0.9212 36.76, 0.9331 37.89, 0.9593 39.18, 0.9661 39.44, 0.9587 40.16, 0.9610 
Mobile 22.44, 0.7161 27.86, 0.8626 29.62, 0.9230 29.82, 0.9292 30.08, 0.9260 30.17, 0.9255 

Bus 26.45, 0.8375 29.80, 0.8895 30.28, 0.9311 30.78, 0.9334 32.10, 0.9254 32.70, 0.9288 
News 30.79, 0.9364 39.25, 0.9679 39.30, 0.9813 39.87, 0.9822 40.03, 0.9822 41.88, 0.9832 
Avg. 28.40, 0.8528 33.42, 0.9133 34.27, 0.9487 34.91, 0.9527 35.41, 0.9481 36.23, 0.9463 

                   SNK = 0.4 
Foreman 35.46, 0.9393 37.92, 0.9439 39.10, 0.9673 39.89,0.9705 40.31, 0.9652 41.57, 0.9691 
Mobile 24.30, 0.7972 29.08, 0.8814 30.65, 0.9335 30.85, 0.9406 31.19, 0.9375 31.46, 0.9376 

Bus 28.27, 0.8844 31.31, 0.9112 32.93, 0.9562 32.21, 0.9489 33.47, 0.9409 34.73, 0.9463 
News 33.61, 0.9570 40.62, 0.9737 39.85, 0.9830 40.13, 0.9832 41.80, 0.9842 43.61, 0.9861 
Avg. 30.41, 0.8945 34.73, 0.9276 35.63, 0.9600 35.77, 0.9608 36.69, 0.9570 37.84, 0.9600 

                   SNK = 0.5 
Foreman 36.95, 0.9533 39.14, 0.9544 40.23, 0.9736 40.42, 0.9739 41.00, 0.9703 42.89, 0.9756 
Mobile 26.33, 0.8559 30.37, 0.9005 31.70, 0.9433 31.67, 0.9487 32.31, 0.9470 33.00, 0.9484 

Bus 30.33, 0.9215 32.97, 0.9320 34.98, 0.9695 33.43, 0.9598 34.56, 0.9523 36.78, 0.9599 
News 36.11, 0.9700 42.14, 0.9794 40.28, 0.9844 39.75, 0.9835 42.25, 0.9856 44.74, 0.9884 
Avg. 32.43, 0.9252 36.16, 0.9416 36.80, 0.9677 36.32, 0.9665 37.53, 0.9638 39.35, 0.9681 

 
 

Table 3. Average reconstruction time (s/frame) comparison of various algorithms 
I-P-I Model I-B-I Model 

Algorithm Time (s/frame) Algorithm Time(s/frame) 
[5] 5.55 [5] 8.94 
[6] 11.04 [6] 14.82 

[16] 35.83 [16] 60.00 
[17] 6.43 [17] 10.25 

APCA 31.96 APCA 37.85 
APCA-NL 46.32 APCA-NL 55.81 
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5. Conclusions 
This paper combines the adaptive PCA sparse dictionary constructed by the correlation 

between frames and the regularization item constructed by the non-local similarity to propose 
a joint reconstruction algorithm for improving the rate-distortion performance of DVCS 
system. With the various temporal-spatial statistic characteristic, the fixed sparse dictionary 
cannot effectively exploit the sparse property of video frame, and although the sparse 
dictionary extracted from neighboring frames can change as the content of video frame is 
change, it is not the best one, this is because that the example-based sparse dictionary lacks the 
motion estimation between frames and the reference frame contains noises. The proposed 
construction of sparse dictionary firstly uses the CS measurements of current non-key frame to 
perform motion estimation in measurement domain, and then uses the motion information 
between frames to extract the example to produce the data matrix, and finally uses PCA to 

      
         （a）Ref. [5]                                      （b）Ref. [6]                                （c）Ref. [16]   
         PSNR = 22.56 dB                                PSNR = 27.37dB                          PSNR = 29.25 dB 
         SSIM = 0.7133                                    SSIM = 0.8505                              SSIM = 0.9204 

      
         （d）Ref. [17]                                  （e）APCA                                   （f）APCA-NL 
         PSNR = 29.62 dB                              PSNR = 29.84dB                            PSNR = 29.93dB 
         SSIM = 0.9231                                  SSIM = 0.9236                                SSIM = 0.9273 
Fig. 6. When SNK is 0.3, the comparison of subjective visual quality on Mobile 4-th frame for various 

algorithms under I-B-I model. 
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compute the significant principle components of data matrix for constructing the sparse 
dictionary. The sparse priori knowledge cannot still recover the edge and texture details of 
video frame well. To improve the quality of edge and texture regions, the non-local similarity 
of video frame is used to construct the regularization item, and the regularization item is mixed 
into the joint CS reconstruction model to remove the blurring and blocking artifacts in edge 
and texture regions. Experimental results show that the proposed algorithm can effectively 
improve the rate-distortion performance of DVCS system at the cost of a certain 
computational complexity, and achieve the better subjective and objective reconstructed 
quality. 
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