Acknowledgement
Supported by : National Science Foundation (NSF), Ministry of Education of China
References
- M. Cossalter, G. Valenzise, M. Tagliasacchi and S. Tubaro, "Joint Compressive Video Coding and Analysis," IEEE Trans. Multimedia, vol. 12, no. 3, pp. 168-183, April, 2010. https://doi.org/10.1109/TMM.2010.2041105
- N. Vaswani and W. Lu, "Modified-CS: Modifying Compressive Sensing for Problems With Partially Known Support," IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4595-4607, September, 2010. https://doi.org/10.1109/TSP.2010.2051150
- W. U. Bajwa, J. Haupt, A. M. Sayeed and R. Nowak, "Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels," in Proc. of IEEE, vol. 98, no. 6, pp. 1058-1076, June, 2010.
- E. J. Candes and T. Tao, "Decoding by linear programming," IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 4203-4215, December, 2005. https://doi.org/10.1109/TIT.2005.858979
- W. Shi, Q. Ling, K. Yuan, G. Wu and W. Yin, "On the Linear Convergence of the ADMM in Decentralized Consensus Optimization," IEEE Trans. Signal Process., vol. 62, no. 7, pp. 1750-1761, April1, 2014. https://doi.org/10.1109/TSP.2014.2304432
- E. J. Candès, M. B. Wakin and S. P. Boyd, "Enhancing sparsity by reweighted ℓ1 minimization." J. Fourier Anal. Appl., vol. 14, no. 5-6, pp. 877-905, December, 2008. https://doi.org/10.1007/s00041-008-9045-x
- D. P. Wipf, B. D. Rao and S. Nagarajan, "Latent Variable Bayesian Models for Promoting Sparsity," IEEE Trans. Inform. Theory, vol. 57, no. 9, pp. 6236-6255, September, 2011. https://doi.org/10.1109/TIT.2011.2162174
- I. F. Gorodnitsky and B. D. Rao, "Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm," IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600-616, March, 1997. https://doi.org/10.1109/78.558475
- C. Lu, Z. Lin and S. Yan, "Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization," IEEE Trans. Image Process., vol. 24, no. 2, pp. 646-654, Feb. 2015. https://doi.org/10.1109/TIP.2014.2380155
- C. J. Miosso, R. von Borries, M. Argaez, L. Velazquez, C. Quintero and C. M. Potes, "Compressive Sensing Reconstruction With Prior Information by Iteratively Reweighted Least-Squares," IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2424-2431, June, 2009. https://doi.org/10.1109/TSP.2009.2016889
- Z. Zhang, T. P. Jung, S. Makeig and B. D. Rao, "Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG Via Block Sparse Bayesian Learning," IEEE Trans. Biomed. Eng., vol. 60, no. 2, pp.300-309, February, 2013. https://doi.org/10.1109/TBME.2012.2226175
- D. R. Hunter and K. Lange, "A tutorial on MM algorithms," Am. Stat., vol. 58, no. 1, pp. 30-37, 2004. https://doi.org/10.1198/0003130042836
- P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock, "On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision," SIAM J. Imaging Sci., vol. 8. no. 1, pp. 331-372, February, 2015. https://doi.org/10.1137/140971518
- H. Attouch, J. Bolte and B. F. Svaiter, "Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods," Math. Program., vol. 137, no. 1, pp. 91-129, February, 2013. https://doi.org/10.1007/s10107-011-0484-9
- R. T. Rockafellar and R. J. B. Wets, Variational analysis, 1st Edition, Springer-Verlag, Berlin, 1998.
- M. J. Lai, Y. Y. Xu, and W. Yin, "Improved iteratively reweighted least squares for unconstrained smoothed ℓq minimization," SIAM J. Numer. Anal., vol. 51, no. 2, pp. 927-957, March, 2013. https://doi.org/10.1137/110840364
- L. Qin, Z. Lin, Y. She and C. Zhang, "A comparison of typical ℓp minimization algorithms," Neurocomputing, vol. 119, pp. 413-424, November, 2013. https://doi.org/10.1016/j.neucom.2013.03.017
- J. f. Yang and Y. Zhang, "Alternating Direction Algorithms for $ell_1$-Problems in Compressive Sensing," SIAM J. Sci. Comput., vol. 33, no. 1, pp. 250-278, February, 2011. https://doi.org/10.1137/090777761
- S. Boyd and L. Vandenberghe, Convex optimization, 1st Edition, Cambridge University Press, New York, 2004.
- Z. Gao, L. Dai, Z. Wang and S. Chen, "Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO," IEEE Trans. Signal Process., vol. 63, no. 23, pp. 6169-6183, December, 2015. https://doi.org/10.1109/TSP.2015.2463260
- F. Pena-Campos, R. Carrasco-Alvarez, O. Longoria-Gandara and R. Parra-Michel, "Estimation of Fast Time-Varying Channels in OFDM Systems Using Two-Dimensional Prolate," IEEE Trans. Wirel. Commun., vol. 12, no. 2, pp. 898-907, February, 2013. https://doi.org/10.1109/TWC.2013.010413.120624
- A. Zhang, S. Yang, J. Li, C. Li and Z. Liu, "Sparsity Adaptive Expectation Maximization Algorithm for Estimating Channels in MIMO Cooperation systems," Ksii Trans. Internet Inf., vol. 10, no. 8, p3498-3511, August, 2016.
- M. F. Duarte and Y. C. Eldar, "Structured Compressed Sensing: From Theory to Applications," IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4053-4085, September, 2011. https://doi.org/10.1109/TSP.2011.2161982
- Z. Gao, L. Dai, W. Dai, B. Shim and Z. Wang, "Structured Compressive Sensing-Based Spatio-Temporal Joint Channel Estimation for FDD Massive MIMO," IEEE Trans. Commun., vol. 64, no. 2, pp. 601-617, February, 2016. https://doi.org/10.1109/TCOMM.2015.2508809
- Z. Zhang and B. D. Rao, "Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning," IEEE J. Sel. Top. Sign. Proces., vol. 5, no. 5, pp. 912-926, September, 2011. https://doi.org/10.1109/JSTSP.2011.2159773
- Z. Gao, L. Dai, C. Qi, C. Yuen and Z. Wang, "Near-Optimal Signal Detector Based on Structured Compressive Sensing for Massive SM-MIMO," IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1860-1865, February, 2017. https://doi.org/10.1109/TVT.2016.2557625
- S. Beygi, U. Mitra and E. G. Strom, "Nested Sparse Approximation: Structured Estimation of V2V Channels Using Geometry-Based Stochastic Channel Model," IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4940-4955, September, 2015. https://doi.org/10.1109/TSP.2015.2449256
- R. Prasad, C. R. Murthy and B. D. Rao, "Joint Approximately Sparse Channel Estimation and Data Detection in OFDM Systems Using Sparse Bayesian Learning," IEEE Trans. Signal Process., vol. 62, no. 14, pp. 3591-3603, July, 2014. https://doi.org/10.1109/TSP.2014.2329272
- J. W. Choi and B. Shim, "Statistical Recovery of Simultaneously Sparse Time-Varying Signals From Multiple Measurement Vectors," IEEE Trans. Signal Process., vol. 63, no. 22, pp. 6136-6148, November, 2015. https://doi.org/10.1109/TSP.2015.2463259
- F. Gustafsson et al., "Particle filters for positioning, navigation, and tracking," IEEE Trans. Signal Process., vol. 50, no. 2, pp. 425-437, February, 2002. https://doi.org/10.1109/78.978396
- D. P. Wipf, B. D. Rao and S. Nagarajan, "Latent Variable Bayesian Models for Promoting Sparsity," IEEE Trans. Inform. Theory, vol. 57, no. 9, pp. 6236-6255, September, 2011. https://doi.org/10.1109/TIT.2011.2162174
- M. S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking," IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174-188, February, 2002. https://doi.org/10.1109/78.978374
- Q. Qin, L. Gui, B. Gong, X. Ren and W. Chen, "Structured Distributed Compressive Channel Estimation Over Doubly Selective Channels," IEEE Trans. Broadcast., vol. 62, no. 3, pp. 521-531, September, 2016. https://doi.org/10.1109/TBC.2016.2550761
- D. P. Wipf and B. D. Rao, "An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem," IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3704-3716, July, 2007. https://doi.org/10.1109/TSP.2007.894265
- Z. Zhang, W. Zhang and C. Tellambura, "Cooperative OFDM Channel Estimation in the Presence of Frequency Offsets," IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3447-3459, September, 2009. https://doi.org/10.1109/TVT.2009.2016345