• Title/Summary/Keyword: Space Launch System

Search Result 427, Processing Time 0.025 seconds

STSAT-2 PFM Environmental Test Result (과학기술위성 2호 준비행모델 환경시험 결과)

  • Lee, Seung-Hun;Park, Jong-Oh;Sim, Eun-Sup;Rhee, Seung-Woo;Seo, Jung-Ki;Jang, Tae-Sung;Lee, Sang-Hyun;Kim, Sung-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • STSAT-2 (Science & Technology SATellite-2) is a Korea micro-satellite which will be launched at NARO Space center in Koheung, Korea. Launch vehicle for STSAT-2 is KSLV-1 (Korea Space Launch Vehicle-1) which is the first development in Korea space launch vehicle program. Starting development in 2002 EM(Engineering Model), PFM(Proto-Flight Model), and FM(Flight Model) were developed completely. Electrical functional test, space environmental test, and launch vehicle environmental test on system level are performed for testing those development models. In this paper we report the results of STSAT-2 PFM space environmental test and launch vehicle environmental test which is successfully completed.

  • PDF

Liquid-monopropellant Thrusters for the 3-axis Attitude Control of Space Launch Vehicles -Part 2: A Practical Application of Flight-axes/Attitude Control Thrusters to the Space Launch Vehicle and Their Design Development Localization (우주발사체 3축 자세제어용 단일액체추진제 추력기 -Part 2: 비행축/자세제어용 추력기의 우주발사체 적용과 국내 설계개발)

  • Kim, Jeong-Soo;Bae, Dae-Seok;Jung, Hun;Seo, Hang-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.179-182
    • /
    • 2011
  • A practical application of flight-axes/attitude control thrusters to the space launch vehicle and their design development localization are investigated and analyzed. Hydrazine thrusters are mostly used in a final stage of space launch vehicles on account of its higher specific impulse and reliability necessary for the precise attitude control attaining the orbit insertion with higher accuracy.

  • PDF

Optimal Design to Improve Launch Velocity of Coilgun Launching System (코일건 발사 시스템의 발사속도 향상을 위한 최적설계)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.131-136
    • /
    • 2018
  • Research on space development and satellites is being actively pursued. An interesting field is the study of reliable low-cost space launch vehicles. Since chemical fuel-based launching systems are expensive and take a lot of time and cost to maintain, the EML system, which is an electromagnetic force launching apparatus, is attracting attention. The EML system converts electrical energy stored in a capacitor into magnetic energy, and converts magnetic energy into mechanical kinetic energy, thereby accelerating the projectile. Although studies are actively conducted in the field, it is difficult to solve the equation because the impedance and speedance change with time and the nonlinearity is strong. Many researchers have solved this equation in a variety of methods. In this paper, the velocity analysis of the projectile was carried out by FEM (finite element method) using the commercial electromagnetic analysis program MAXWELL.

Design and Implementation of Simulator of Launch Control System (발사관제시스템 시뮬레이터의 설계 및 구현)

  • An, Jae-Chel;Moon, Kyung-Rok;Oh, Il-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.657-665
    • /
    • 2016
  • Launch Control System(LCS) performs the pre-launch preparation and launch operation during launch campaign. The successful launch operation is basically influenced by hardware and software of LCS. Especially, a trivial errors in control algorithm can cause critical problem or disaster in launch operation. Therefore, the hidden or implicit errors should be distinguished and eliminated by the verification test in advance. In this paper, the design and implementation of hardware and software simulator which have already been used in LCS verification will be introduced. By presenting the detailed design and flowchart-based algorithms, we make other similar systems adopt the implementation philosophies of this paper. Especially, this paper emphasizes that all the simulation algorithms work on the self-controller in LCS without using separated computer or PLC.

A Study On The Configuration Of UHD High Speed Digital Camera System In the Naro Space Center (나로우주센터 초고화질(UHD) 고속 디지털카메라 시스템에 대한 구성방안 연구)

  • Park, Doo-Jin;Noh, Young-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.536-538
    • /
    • 2017
  • UHD high speed digital camera system will be installed around launch pad and launch complex tower to acquire high speed image for motion analysis of integral parts of launch vehicle during the lift-off of KSLV-II in the Naro space center. In this paper, We compared configuration of high speed digital camera system operating in the Naro space center with UHD high speed digital camera system for mission of KSLV-II.

  • PDF

A Process of the Technical Performance Management for A Space Launch Vehicle R&D Project (우주발사체 개발사업을 위한 기술성능관리 프로세스)

  • Yoo, Il Sang;Cho, Dong Hyun;Kim, Keun Taek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.71-79
    • /
    • 2014
  • To enhance success probability of a system development project, its overall risk level should be minimized through systematically managing schedules, costs, and technical performances. However, Attempts to manage technical performance compared to numerous efforts to control costs and schedules in such projects are deficient. Particularly, a space launch vehicle, a large complex system, development project is much less likely to meet its technical performance objectives due to its technological difficulty, along with schedule delay and cost overrun. The technical performance management (TPM) is a method for tracking and managing technical progress in order to achieve technical performance targets within schedule and budget. In this paper, we investigate applications of the TPM in several space launch vehicle development projects. Then we propose and validate the TPM process to achieve a successful mission in such projects.

Functional and Performance Verification of the Space Weather Sensor on GEO-KOMPSAT-2A Satellite

  • Jin, Kyoungwook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.645-652
    • /
    • 2020
  • GK2A(GEO-KOMPSAT-2A)satellite has been operating excellently since its launch in Dec 2018. The secondary payload called KSEM (Korean Space Environment Monitor) was equipped into the GK2A satellite along with AMI (Advanced Meteorological Imager) sensor. KSEM is the Korea's first operational geostationary space weather sensor and has been developed collaboratively by KHU (Kyung Hee University) and KARI (Korea Aerospace Research Institute). The interface works between KSEM and GK2A were conducted by KARI. Various interface tests, which aim for evaluating effective functionality of KSEM with the spacecraft, were intensively conducted at KARI facilities. Main tests consisted of mechanical and electrical check-up activities between the KSEM and GK2A. Interface tests of KSEM, which involve pre-launch tests such as ETB and GK2A system level tests, were conducted to evaluate functional and performance of KSEM before the launch. The tests carried out during the GK2A LEOP (Launch and Early Orbit Phase) and IOT (In Orbit Test) period (Dec 2018 ~ June 2019) showed excellent in-orbit performance of KSEM data.

발사체 추진기관의 신뢰성 평가에 대한 연구

  • Cho, Sang-Yeon;Kim, Yong-Wook;Lee, Jeong-Ho;Han, Yong-Min;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.65-71
    • /
    • 2004
  • Development of space launch system is a national project which requires massive cost and endows the pride of the nation. To acquire the successful launch, the reliability of main system and components should be needed. In addition, reliable propulsion system sways the reliability of main system and is the necessary article for the success of project. In this study, the method called "design for reliability" is introduced, which is required to develop the highly reliable propulsion system.

  • PDF

Design of an Initial Fine Alignment Algorithm for Satellite Launch Vehicles

  • Song, Eun-Jung;Roh, Woong-Rae;Kim, Jeong-Yong;Oh, Jun-Seok;Park, Jung-Ju;Cho, Gwang-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.184-192
    • /
    • 2010
  • In this paper, an initial fine alignment algorithm, which is developed for the strap-down inertial navigation systems of satellite launch vehicles, is considered. For fast and accurate alignment, a simple closed-loop estimation algorithm using a proportional-integral controller is introduced. Through computer simulation for the sway condition in the launch pad, it is shown that a simple filter structure can guarantee fast computational speed that is adequate for real-time implementation as well as the required alignment accuracy and robustness. In addition, its implementation results are presented for the Naro-1 flight test.

KSLV-I 소형위성발사체 발사장 시스템설계(Ⅰ)

  • Lee, Young-Ho;Jin, Seung-Bo;Seo, Jin-Ho;Hong, Il-Hee;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.98-103
    • /
    • 2004
  • This paper describes a system design of Launch Ground Complex for the Korea Space Launch Vehicle-I which will play so important roles of successful execution for Korea National Space Development Program. Launch Ground Complex has to supply safe work space, construction and equipments for assembling, check-out and launching of the space launch vehicle, and it consists of Mechanical, Electrical, Fluid Ground Support Equipment and Infrastructure. Mechanical Ground Support Equipment consists of Launch Pad, Mobile Assembly Tower, Umbilical Tower, Lightning Tower, Theodolite Building and Auxiliary.

  • PDF