• Title/Summary/Keyword: Source-drain current

Search Result 249, Processing Time 0.028 seconds

A Design Evaluation of Strained Si-SiGe on Insulator (SSOI) Based Sub-50 nm nMOSFETs

  • Nawaz, Muhammad;Ostling, Mikael
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.136-147
    • /
    • 2005
  • A theoretical design evaluation based on a hydrodynamic transport simulation of strained Si-SiGe on insulator (SSOI) type nMOSFETs is reported. Although, the net performance improvement is quite limited by the short channel effects, simulation results clearly show that the strained Si-SiGe type nMOSFETs are well-suited for gate lengths down to 20 nm. Simulation results show that the improvement in the transconductance with decreasing gate length is limited by the long-range Coulomb scattering. An influence of lateral and vertical diffusion of shallow dopants in the source/drain extension regions on the device performance (i.e., threshold voltage shift, subthreshold slope, current drivability and transconductance) is quantitatively assessed. An optimum layer thickness ($t_{si}$ of 5 and $t_{sg}$ of 10 nm) with shallow Junction depth (5-10 nm) and controlled lateral diffusion with steep doping gradient is needed to realize the sub-50 nm gate strained Si-SiGe type nMOSFETs.

Gate All Around Metal Oxide Field Transistor: Surface Potential Calculation Method including Doping and Interface Trap Charge and the Effect of Interface Trap Charge on Subthreshold Slope

  • Najam, Faraz;Kim, Sangsig;Yu, Yun Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.530-537
    • /
    • 2013
  • An explicit surface potential calculation method of gate-all-around MOSFET (GAAMOSFET) devices which takes into account both interface trap charge and varying doping levels is presented. The results of the method are extensively verified by numerical simulation. Results from the model are used to find qualitative and quantitative effect of interface trap charge on subthreshold slope (SS) of GAAMOSFET devices. Further, design constraints of GAAMOSFET devices with emphasis on the effect of interface trap charge on device SS performance are investigated.

Characterization and Design Consideration of 80-nm Self-Aligned N-/P-Channel I-MOS Devices

  • Choi, Woo-Young;Lee, Jong-Duk;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.43-51
    • /
    • 2006
  • 80-nm self-aligned n-and p-channel I-MOS devices were demonstrated by using a novel fabrication method featuring double sidewall spacer, elevated drain structure and RTA process. The fabricated devices showed a normal transistor operation with extremely small subthreshold swing less than 12.2 mV/dec at room temperature. The n- and p-channel I-MOS devices had an ON/OFF current of 394.1/0.3 ${\mu}A$ and 355.4/8.9 ${\mu}A$ per ${\mu}m$, respectively. We also investigated some critical issues in device design such as the junction depth of the source extension region and the substrate doping concentration.

A New Structure of SOI MOSFETs Using Trench Mrthod (트랜치 기법을 이용한 SOI MOSFET의 전기적인 특성에 관한 연구)

  • Park, Yun-Sik;Sung, Man-Young;Kang, Ey-Goo
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.67-70
    • /
    • 2003
  • In this paper, propose a new structure of MOFET(Metal-Oxide-Semiconductor Field Effect Transistor) which is widely application for semiconductor technologies. Eleminate the latch-up effect caused by closed devices when conpose a electronic circuit using proposed devices. In this device have a completely isolation structure, and advantage of leakage current elimination. Each independent devices are isolated by trench-well and oxide layer of SOI substrate. Using trench gate and self aligned techniques reduces parasitic capacitance between gate and source, drain. In this paper, we proposed the new structure of SOI MOSFET which has completely isolation and contains trench gate electrodes and SOI wafers. It is simulated by MEDICI that is device simulator.

  • PDF

Organic transistor comprising a polymer gate insulator

  • Kang, Gi-Wook;Kang, Hee-Young;Ahn, Young-Joo;Lee, Nam-Heon;Lee, Mun-Jae;Lim, Jong-Tae;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.777-779
    • /
    • 2002
  • We report the performance of pentacene-based organic thin film transistors (OTFT) with PMMA (polymethyl methacrylate) as the gate insulator which was spin-coated on the ITO (indium tin oxide) glass substrate which was used as the gate contact. The pentacene thin film was deposited on the PMMA film and then Au source/drain contacts were deposited through shadow mask. The pentacene film shows better molecular ordering on PMMA compared with $SiO_2$ of Si wafer. The devices exhibited the field effect mobility of ${\sim}0.004cm^2$/Vs and on/off current ratio of ${\sim}10^3$.

  • PDF

ONO 구조의 nc-si NVM의 전기적 특성

  • Baek, Gyeong-Hyeon;Jeong, Seong-Uk;Jang, Gyeong-Su;Yu, Gyeong-Yeol;An, Si-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.136-136
    • /
    • 2011
  • 반도체 및 전자기기 산업에 있어서 NVM은 아주 중요한 부분을 차지하고 있다. NVM은 디스플레이 분야에 많은 기여를 하고 있는데, 측히 AMOLED에 적용이 가능하여 온도에 따라 변하는 구동 전류, 휘도, color balance에 따른 문제를 해결하는데 큰 역할을 한다. 본 연구에서는 bottom gate 구조의 nc-Si NVM 실험을 진행하였다. P-type silicon substrate (0.01~0.02 ${\Omega}-cm$) 위에 Blocking layer 층인 SiO2 (SiH4:N2O=6:30)를 12.5nm증착하였고, Charge trap layer 층인 SiNx (SiH4:NH3=6:4)를 20 nm 증착하였다. 마지막으로 Tunneling layer 층인 SiOxNy은 N2O (2.5 sccm) 플라즈마 처리를 통해 2.5 nm 증착하였다. 이러한 ONO 구조층 위에 nc-Si을 50 nm 증착후에 Source와 Drain 층을 Al 120 nm로 evaporator 이용하여 증착하였다. 제작한 샘플을 전기적 특성인 Threshold voltage, Subthreshold swing, Field effect mobility, ON/OFF current ratio, Programming & Erasing 특성, Charge retention 특성 등을 알아보았다.

  • PDF

Dual Gate-Controlled SOI Single Electron Transistor: Fabrication and Coulomb-Blockade

  • Lee, Byung T.;Park, Jung B.
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.208-211
    • /
    • 1997
  • We have fabricated a single-electron-tunneling(SET) transistor with a dual gate geometry based on the SOI structure prepared by SIMOX wafers. The split-gate is the lower-gate is the lower-level gate and located ∼ 100${\AA}$ right above the inversion layer 2DEG active channel, which yields strong carrier confinement with fully controllable tunneling potential barrier. The transistor is operating at low temperatures and exhibits the single electron tunneling behavior through nano-size quantum dot. The Coulomb-Blockade oscillation is demonstrated at 15mK and its periodicity of 16.4mV in the upper-gate voltage corresponds to the formation of quantum dots with a capacity of 9.7aF. For non-linear transport regime, Coulomb-staircases are clearly observed up to four current steps in the range of 100mV drain-source bias. The I-V characteristics near the zero-bias displays typical Coulomb-gap due to one-electron charging effect.

  • PDF

Programming Characteristics of the Multi-bit Devices Based on SONOS Structure (SONOS 구조를 갖는 멀티 비트 소자의 프로그래밍 특성)

  • 김주연
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.771-774
    • /
    • 2003
  • In this paper, the programming characteristics of the multi-bit devices based on SONOS structure are investigated. Our devices have been fabricated by 0.35 $\mu\textrm{m}$ complementary metal-oxide-semiconductor (CMOS) process with LOCOS isolation. In order to achieve the multi-bit operation per cell, charges must be locally frapped in the nitride layer above the channel near the source-drain junction. Programming method is selected by Channel Hot Electron (CUE) injection which is available for localized trap in nitride film. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve are investigated. The multi-bit operation which stores two-bit per cell is investigated. Also, Hot Hole(HH) injection for fast erasing is used. The fabricated SONOS devices have ultra-thinner gate dielectrics and then have lower programming voltage, simpler process and better scalability compared to any other multi-bit storage Flash memory. Our programming characteristics are shown to be the most promising for the multi-bit flash memory.

Temperature Measurement by $V_{GS}$ and $V_{DS}$ Method of Power VDMOSFET. (전력 VDMOSFT의 $V_{GS}$$V_{DS}$ 전압 검출에 의한 온도측정)

  • Kim, Jae-Hyun;Lee, Woo-Sun;Chung, Hun-Sang;Yoon, Byung-Do
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.775-778
    • /
    • 1987
  • Double-diffused metal oxide power semiconductor field effect transistors are used extensively in recent years in various circuit applications. The temperature variation of the drain current at a fixed bais shows both positive and negative resistance characteristics depending on the gate threhold voltage and gate-to source bias voltage. In this study, the decision method of the internal temperature measurement by $V_{GS}$ and $V_{DS}$ are presented.

  • PDF

Flyback switching loss analysis by capacitor charge and energy conservation

  • Jin, ChengHao;Chung, Bong-Geun;Moon, SangCheol;Koo, Gwan-Bon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.179-180
    • /
    • 2015
  • The task of measuring losses becomes more challenging with ever increasing efficiencies and operating frequencies in power electronics applications. Generally, the process of traditional switching loss calculation in flyback converter is very complicated. MOSFET drain-source voltage and current waveforms are needed to calculate switching loss. However, as we know in switched capacitor converter, switching loss can be easily calculated by charge and energy conservation law with known initial and final capacitor voltages. In this paper, the same method is applied to fly-back converter switching loss analysis to simplify calculation procedure.

  • PDF