• Title/Summary/Keyword: Sound produce

Search Result 225, Processing Time 0.039 seconds

Study to Propose the Suitable Reproducing Sound Level of SAFRS (능동형 음장조성시스템 연출음의 적정 소리레벨 제시를 위한 기초적 연구)

  • Jeon, Ji-Hyeon;Shin, Yong-Gyu;Kook, Chan;Jang, Gil-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.515-518
    • /
    • 2007
  • SAFRS(Spontaneous Acoustic Field Reproduction System) is a system to sense changes of surroundings and produce sounds which can go well with environment elements sensed by the system in to the space. The sounds were judged by individual evaluation and, the classification of the preferred sounds according to the mood of the space was suggested in the former study. Effectiveness of SAFRS with field application was validated by prior studies which dealt with researching acoustic environment, evaluating images of sounds, and rating environment with existence and nonexistence of sound resources such as fountains and the system after applied in D university. In this study, for more effective field application of SAFRS, research for the acoustic environment around sound resources and subjective evaluation of the preference of the sounds from the resources were made and it was considered that the results of the experiments should be primary information to propose proper sound level to be offered by the system. The results of the study are as follows; 1) It was considered that the ambience of the center road was dependent upon produced sounds by the system and water sounds of the fountain and that of walk way was mostly dependent upon produced sounds. 2) The results of the subjective evaluation showed that the distance from sound resources was suggestive; the more distant from produced sounds the less full and clear the sounds, the less distant from the sounds of water the more delight and idyllic ambience, and the less distant from the forest the more idyllic ambient and diversity. 3) The results upwards were telling that an average value of six elements for the evaluation was even at the place set back 10.2m from center road and walk way. And harmony of all sounds of the place should be considered to propose suitable sound level of SAFRS.

  • PDF

Study to Propose the Suitable Reproducing Sound Level of SAFRS (능동형 음장조성시스템 연출음의 적정 소리레벨 제시를 위한 연구)

  • Jeon, Ji-Hyeon;Shin, Yong-Gyu;Kook, Chan;Jang, Gil-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.547-552
    • /
    • 2007
  • SAFRS(spontaneous acoustic field reproduction system) is a system to sense changes of surroundings and produce sounds which can go well with environment elements sensed by the system in to the space. The sounds were judged by individual evaluation and, the classification of the preferred sounds according to the mood of the space was suggested in the former study. Effectiveness of SAFRS with field application was validated by prior studies which dealt with researching acoustic environment, evaluating images of sounds, and rating environment with existence and nonexistence of sound resources such as fountains and the system after applied in D university. In this study, for more effective field application of SAFRS, research for the acoustic environment around sound resources and subjective evaluation of the preference of the sounds from the resources were made and it was considered that the results of the experiments should be primary information to propose proper sound level to be offered by the system. The results of the study are as follows; 1) It was considered that the ambience of the center road was dependent upon produced sounds by the system and water sounds of the fountain and that of walk way was mostly dependent upon produced sounds. 2) The results of the subjective evaluation showed that the distance from sound resources was suggestive; the more distant from produced sounds the less full and clear the sounds, the less distant from the sounds of water the more delight and idyllic ambience, and the less distant from the forest the more idyllic ambient and diversity. 3) The results upwards were telling that an average value of six elements for the evaluation was even at the place set back 10.2m from center road and walk way. And harmony of all sounds of the place should be considered to propose suitable sound level of SAFRS.

Ultrasonic Bone Densitometer by Measuring the Speed of Sound (SOS를 이용한 초음파 골밀도 측정 장치)

  • Jung, Min-Sang;Hahn, Eun-Joo;Kim, Yeong-Sik
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.172-178
    • /
    • 2007
  • An ultrasonic bone densitometer has been developed by measuring speed of sound signal transmitted and received on the skin, not through the horizontal axis but through the vertical one in tissue. The SOS(speed of sound) method measuring the time difference between the ultrasound signals reflected from the both sides of surface of bone could produce more precise result compared with the BUA(broadband ultrasound attenuation) method measuring the frequency difference. Middle finger is selected to be the best measurement position in order to increase the accuracy, after due consideration that the thickness of flesh at the down part of thumb shows too much variation although the ratio of the receiving signal is higher than the other fingers. The measured value by using SOS method shows almost the same result as compared with the conventional DEXA method.

  • PDF

Localization of Rotating Sound Sources Using Beamforming Method (빔형성방법을 이용한 회전하는 음원의 위치 판별에 관한 연구)

  • Lee Jaehyung;Hong Suk-Ho;Choi Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1338-1346
    • /
    • 2004
  • The positions of rotating sound sources have been localized by experiments with the Doppler effects removed. In order to de-Dopplerize the sound signals emitted from moving sources, two kinds of signal reconstruction methods were applied. One is the forward propagation method and the other is the backward propagation method. Forward propagation method analyze the source emission time based on the instantaneous distance between sensors and the assumed source position, then the signals are reconstructed with respect to the emission time. On the other hand, the backward method uses time delay to do-Dopplerize the acquired data for the received time of reference. In both techniques. the reconstructed signal data were processed using beamforming algorithm to produce power distributions at the frequencies of interest. Experiments have been carried out for varying frequencies, rotating speeds and the object distances. It is shown that the forward propagation method gives better performance in locating source position than the backward propagation method.

Impulsive sound localization using crest factor of the time-domain beamformer output (빔형성기 출력의 파고율을 이용한 충격음의 방향 추정)

  • Seo, Dae-Hoon;Choi, Jung-Woo;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.713-717
    • /
    • 2014
  • This paper presents a beamforming technique for locating impulsive sound source. The conventional frequency-domain beamformer is advantageous for localizing noise sources for a certain frequency band of concern, but the existence of many frequency components in the wide-band spectrum of impulsive noise makes the beamforming image less clear. In contrast to a frequency-domain beamformer, it has been reported that a time-domain beamformer can be better suited for transient signals. Although both frequency- and time-domain beamformers produce the same result for the beamforming power, which is defined as the RMS value of its output, we can use alternative directional estimators such as the peak value and crest factor to enhance the performance of a time-domain beamformer. In this study, the performance of three different directional estimators, the peak, crest factor and RMS output values, are investigated and compared with the incoherent interfering noise embedded in multiple microphone signals. The proposed formula is verified via experiments in an anechoic chamber using a uniformly spaced linear array. The results show that the peak estimation of beamformer output determines the location with better spatial resolution and a lower side lobe level than crest factor and RMS estimation in noise free condition, but it is possible to accurately estimate the direction of the impulsive sound source using crest factor estimation in noisy environment with stationary interfering noise.

  • PDF

Development of Anthropomorphic Robot Finger for Violin Fingering

  • Park, Hyeonjun;Lee, Bumjoo;Kim, Donghan
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1218-1228
    • /
    • 2016
  • This paper proposes a robot hand for a violin-playing robot and introduces a newly developed robot finger. The proposed robot hand acts as the left hand of the violin-playing robot system. The violin fingering plays an important role in determining the tone or sound when the violin is being played. Among the diverse types of violin fingering playing, it is not possible to produce vibrato with simple position control. Therefore, we newly designed a three-axis load cell for force control, which is mounted at the end of the robot finger. Noise is calculated through an analysis of the resistance difference across the strain gauge attached to the proposed three-axis load cell. In order to ensure the stability of the three-axis load cell by analyzing the stress distribution, the strain generated in the load cell is also verified through a finite element analysis. A sound rating quality system previously developed by the authors is used to compare and analyze the sound quality of the fourth-octave C-note played by a human violinist and the proposed robot finger.

Vehicle-induced aerodynamic loads on highway sound barriers part 2: numerical and theoretical investigation

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.479-494
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. As references to the previous field experiment, the vehicle-induced aerodynamic loads is investigated by numerical and theoretical methodologies. The numerical results are compared to the experimental one and proved to be available. By analyzing the flow field achieved in the numerical simulation, the potential flow is proved to be the main source of both head and wake impact, so the theoretical model is also validated. The results from the two methodologies show that the shorter vehicle length would produce larger negative pressure peak as the head impact and wake impact overlapping with each other, and together with the fast speed, it would lead to a wake without vortex shedding, which makes the potential hypothesis more accurate. It also proves the expectation in vehicle-induced aerodynamic loads on Highway Sound Barriers Part1: Field Experiment, that max/min pressure is proportional to the square of vehicle speed and inverse square of separation distance.

Fault Diagnosis System based on Sound using Feature Extraction Method of Frequency Domain

  • Vununu, Caleb;Kwon, Oh-Heum;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.450-463
    • /
    • 2018
  • Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sounds being inevitably corrupted by random disturbance, the most important part of the diagnosis consists of discovering the hidden elements inside the data that can reveal the faulty patterns. This paper presents a novel feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by the drills. Using the Fourier analysis, the magnitude spectrum of the sounds are extracted, converted into two-dimensional vectors and uniformly normalized in such a way that they can be represented as 8-bit grayscale images. Histogram equalization is then performed over the obtained images in order to adjust their very poor contrast. The obtained contrast enhanced images will be used as the features of our diagnosis system. Finally, principal component analysis is performed over the image features for reducing their dimensions and a nonlinear classifier is adopted to produce the final response. Unlike the conventional features, the results demonstrate that the proposed feature extraction method manages to capture the hidden health patterns of the sound.

A Study of the Changes of Game Music (게임음악의 변천에 대한 고찰)

  • Lee, Jeong-Hyeok
    • Journal of Korea Game Society
    • /
    • v.12 no.1
    • /
    • pp.103-111
    • /
    • 2012
  • Games in 1970s have used the savings of analog wavelength as in music and the like on hardwares of small cassette, gramophone, and the like. Due to these configuration elements, durability has to be declined so much. In the event of using the music on the video game, more affordable method is to use the computer chip to convert the analog sound into the computer code to convert into the electric wavelength to send to the speaker. The sound effect of the game is generated in this method. The technical limit has been gradually overcome to grant more freedom to the composers and the sound track pre-recorded on the optic disc and the like has emerged. The game developers of today have made several attempts on the technology to produce the game music. This study has contemplated the process of advancement in the change of game music production with the influence on technology and business.

Sound Monitoring System of Machining using the Statistical Features of Frequency Domain and Artificial Neural Network (주파수 영역의 통계적 특징과 인공신경망을 이용한 기계가공의 사운드 모니터링 시스템)

  • Lee, Kyeong-Min;Vununu, Caleb;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.837-848
    • /
    • 2018
  • Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.