• Title/Summary/Keyword: Sound pressure distribution

Search Result 117, Processing Time 0.028 seconds

A Study on Effects of Piston Pumping Phase on Vibration and Noises of Tandem Swash Plate Type Axial Piston Pump(2) (피스톤 펌핑 위상이 텐덤형 사판식 액셜 피스톤 펌프의 진동, 소음에 미치는 영향에 관한 연구(2))

  • Park, Sung-Hwan;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.31-39
    • /
    • 1999
  • Previous researches and experiments have already verified that the primary noise source of high pressure tandem axial thpe piston pump is fluid-borne noise from the process of oil distribution between the kidney-shaped port and valve plate. So, many researchers have improved pressure gradients and reduced sound levels by applying pre-compression and pre-decompression metering grooves to valve plate. In practice however, the sound level of th high pressure tandem axial type piston pump is still undesirable. This paper testified the effect of pumping phase of the piston on vibration and noise of th high pressure tandem axial type piston pump on the best of theoretical research in $this^(1)$. Therefore considering the pumping phase of the piston when assembling the tandem axial type piston pump, it is possible to reduce 1.5~2[dB]of sound level.

  • PDF

Performance of retaining walls with and without sound wall under seismic loads

  • Mock, Erin;Cheng, Lijuan
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.909-935
    • /
    • 2014
  • The seismic characteristics of two semi-gravity reinforced concrete cantilever retaining walls are examined via an experimental program using an outdoor shake table (one with and the other without concrete masonry sound wall on top). Both walls are backfilled with compacted soil and supported on flexible foundation in a steel soil container. The primary damages during both tests are associated with significant lateral displacements of the wall caused by lateral earth pressure; however, no collapse occurs during the tests. The pressure distribution behind the walls has a nonlinear trend and conventional methods such as Mononobe-Okabe are insufficient for accurate pressure estimation.

A Study on Ultrasonic Sould-fields for Cleaning in a Pipe (관 내 세정을 위한 초음파 음장 연구)

  • Lee, Jung-Gu;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.564-570
    • /
    • 2005
  • This paper presents some results of research for applying ultrasonic cleaning to an interior wall of cylindrical pipe. As the cleaning is achieved better for higher sound pressure, ultrasonic sound field in a cylindrical container is considered. The paper identifies nonuniform sound field established by the radiation of a cylindrical transducer driven at resonant frequency, Numerical analysis predicts the sound pressure distribution, and experiment verifies the trend of analysis results. Experiment observes the cleaning effect, and this paper suggests the possibility of using a cylindrical ultrasonic cleaning device.

Estimation of sound radiation for a flat plate by using BEM and vibration experiment (경계요소 해석과 진동 실험을 이용한 단순 평판의 방사 음향 예측)

  • 김관주;김정태;최승권
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.843-848
    • /
    • 2000
  • BEA(Boundary Element Analysis) based on Kirchhoff-Helmholtz integral equation is widely used in the prediction of sound radiation problems of vibrating structures. Accurate estimation of sound pressure distribution by BEA can be [possible if and only if dynamic behavior of the relating structure was described correctly. Another plausible method of sound radiation phenomena could be the NAH(Nearfield Acoustic Holography) method. NAH also based on the identical governing equation with BEA could be one of the best acoustic imaging schemes but it has disadvantages of the complexity of measurement and of the need of large amount of measuring points. In this paper, modal expansion method is presented for taking accurate dynamic data of the structures efficiently. This method makes use of vibration principle an arbitrary dynamic behavior of the structure is described by the summation of that structures mode shapes which can be calculated by FEA easily and accurately. Sound pressure field from a vibration flat plate is calculated using the combination of vibration signal on that flat plate from experiment, and of the natural mode shapes form FEA. When sound pressure field from vibration signal is calculated the importance of the phase information was emphasized.

  • PDF

A study on Contact Pressure Measurement of SM45C/STS410 Materials by Means of Ultrasonic Waves (초음파에 의한 SM45C/STS410재의 접촉압력측정에 관한 연구)

  • Yi, W.;Yun, I.S.;Jeong, E.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.92-99
    • /
    • 1996
  • The contact pressure in jointed plates was measured by means of an improved ultrasonic technique. In order to get calibration curve, the relationship between contact pressure and ratio of boundary and bottom echo of normal beam probes were obtained for the calibration blocks with various surface roughness. The ratio of boundary and bottom echoes were measured for the upper/under plates locally compressed with uniform pressure, and the distribution of contact pressure was obtaines. The measured pressure has a good agreement with results of FEM analysis. Thus the proposed ultrasonic method in this work is very useful to measure the contact pressure.

  • PDF

A Study on the Noise Characteristics According to Bellmouth Inlet Shape (벨마우스 흡입구 형상에 따른 원심팬의 소음 특성에 관한 연구)

  • Lee, Hyun-Nam;Hong, Dong-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.809-812
    • /
    • 2006
  • This article shows the study on the arresting sound occurrence due to the interaction of the centrifugal Fan and bellmouth suction flow with bellmouth height as variable. It has accomplished to measure of inlet noise and also to analysis suction pressure distribution through experiment and also using CFD. The main cause of sound occurrence was judged with the effect due to static pressure change of bellmouth surface.

  • PDF

Complex envelope of sound field and its application (음장의 복소 포락과 응용)

  • Park, Choon-Su;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.502-505
    • /
    • 2006
  • Acoustic holography allows us to predict spatial pressure distribution on any surface of interest from measured hologram. It is noteworthy that the data size is so huge that it takes long time to calculate pressure field. Moreover the reconstructed pressure field is frequently too complicated to get what we want to know. One possible candidate is complex envelope. Complex envelope in time domain is well known and widely used in various engineering field. We have attempted to extend this method to space domain, so that we can have rather simple spatial pressure picture that provides information we need, for example, where sound sources are. First we start with the simplest case. We examine the complex envelope of a plane wave on both space and wave number domain. Then we extend to monopole case. Holographic reconstructed sound field on the monopole is processed according to what we propose. We demonstrate how this method provides better picture for analyzing the sound field.

  • PDF

A Study on a Quantitative Measurement of Contact Pressure Between two Rough Flat SurFaces by Means of Ultrasonic Waves. (초음파를 이용한 이체 평면접촉부의 정량적인 접촉압력 측정에 관한 연구)

  • 김경모;정인성
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.3
    • /
    • pp.8-26
    • /
    • 1990
  • It is important to have exact information about the contact pressure distribution in the design of connected parts of machines and structures. In previous works, stress analyses on a two body contact problem have been carried out in large numbers. Besides, the measurement of contact stress is important to confirm the adequateness of the theoretical analysis, to verify appropriateness of Hertzian contact theory and to know the practical pressure distribution, but an excellent measuring method con't be found at present. Therefore, a quantitative measurement of contact pressure by means of ultrasonic waves using a normal probe and an angle has been proposed to measure the contact pressure distribution between two rough flat surfaces. At first, in a new proposed calibration method, the relation between mean contact pressure and sound pressure of reflected waves is obtained by using calibration blocks with various surface roughnesses made of the same material as the rectangular section beams And then, this experimental results are compared with the analytical ones, and the utility of this method is discussed.

  • PDF

Numerical Simulation of Aerodynamic Sound by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 유동소음의 수치계산)

  • 강호근;김은라
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • In this research, a numerical simulation for the acoustic sounds around a two-dimensional circular cylinder in a uniform flaw was developed, using the finite difference lattice Boltzmann model. We examine the boundary condition, which is determined by the distribution function concerning density, velocity, and internal energy at the boundary node. Pressure variation, due to the emission of the acoustic waves, is very small, but we can detect this periodic variation in the region far from the cylinder. Daple-like emission of acoustic waves is seen, and these waves travel with the speed of sound, and are synchronized with the frequency of the lift on the cylinder, due to the Karman vortex street. It is also apparent that the size of the sound pressure is proportional to the central distance to the circular cylinder. The lattice BGK model for compressible fluids is shown to be a powerful tool for the simulation of gas flaws.