• Title/Summary/Keyword: Sound isolation

Search Result 74, Processing Time 0.021 seconds

Development of Sound Isolation Sheets with Compound Materials (복합재료를 이용한 시트형 차음재 개발)

  • Lee, Dong-Hoon;Lee, Tae-Kun;Cheong, Seong-Kyun;Lee, Hee-Won;Kang, Moon;Kim, Young-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.415-420
    • /
    • 2000
  • This paper describes a part of the results obtained in the process of the development of thin sound isolation sheets filled mineral compound powder with PVC. The raw materials used are pyrophillite, pottery stone and graphite. The physical properties such as the crystal structures, compositions, and specific gravities, etc. of raw materials are analyzed and discussed from a point of view of sound isolation material. From the analysis of experimental results, the particle size and the additive amount of mineral compound powder for manufacturing sample isolation sheets are decided. The resistant capability against fire of sound isolation sheets including mechanical, thermal and physical properties is tested. The transmission loss measuremenst of sound isolation sheets are performed using two-microphone method in an impedance tube. It is shown that the sound isolation capability of thin sheets has an excellent performance in excess of the object of development.

  • PDF

Development of a Practical Two-Microphone Impedance Tube Method for Sound Transmission Loss Measurement of Sound Isolation Materials

  • Ro, Sing-Nam;Hwang, Yoon;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.105-113
    • /
    • 2003
  • This study developed a practical two-microphone impedance tube method to measure the sound transmission loss of sound isolation materials without the use of an expensive reverberation room or an acoustic intensity probe. In order to evaluate the validation and applicability of the two-microphone impedance tube method, sound transmission losses for several sound isolation materials with different surface density and bending stiffness were measured, and the measured values were compared with the results from the reverberation room method and the theory. From the experimental results, it was found that the accuracy of sound transmission loss obtained by the impedance tube method depends upon the diameter size of the impedance tube (i.e., tested sample size). For sound isolation materials having relatively large bending stiffness such as acryl, wood, and aluminum plates, it was found that the impedance tube method proposed by this study was not valid to measure the sound transmission loss. On the other hand, for sound isolation materials having relatively small bending stiffness such as rubber, polyvinyl, and asphalt sheets, the comparisons of transmission loss between the results from the impedance tube method and the theory showed a good agreement within the range of the frequencies satisfying the normal incidence mass law. Therefore, the two-microphone impedance tube method proposed by this study can be an effective measurement method to evaluate the sound transmission loss for soft sound isolation sheets having relatively small bending stiffness.

The Limit and Application of Two-microphone Impedance Tube Method to the Sound Transmission Loss Measurement of Sound Isolation Materials (차음재의 음향투과손실 측정에 Two-Microphone Impedance Tube Method의 적용과 한계)

  • Lee, Seung;Ahn, Min-Hong;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.883-888
    • /
    • 2002
  • This study describes the limit and application of the two-microphone impedance tube method to the sound transmission loss measurement of several sound isolation materials with different physical properties. For the sound isolation materials having small flexural rigidity, it is shown that the two-microphone impedance tube method is validated to practically measure the sound transmission loss. For the sound isolation materials having large flexural rigidity, on the other hand, it is found that the two-microphone impedance tube method is no longer valid to measure the sound transmission loss because the regions of resonance and mass law are moved into the higher frequencies. In addition, in order to accurately measure the sound transmission loss of sound isolation materials, their size should be decided based on the consideration of the effect of acoustic excitation on their vibration response.

  • PDF

Sound Transmission Loss Measurement for Sound Isolation Sheets by Two-Microphone Impedance Tube Method (두 개의 마이크로폰의 부착된 임피던스관법을 이용한 차음시트의 음향투과손실 측정)

  • Lee, Dong-Hoon;Yong, Ho-Taek;Lee, Seung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.63-72
    • /
    • 2002
  • The main objective of this study is to propose a practical two-microphone impedance tube method to measure the sound transmission loss for flexible sound isolation sheets without the use of the time-consuming and expensive reverberation room. This method was based on the sound decomposition theory developed by Seybert using the spectral density functions of the incident and reflected sound waves. In order to verify the validity of the experimental results, the measured sound transmission losses from the proposed method were compared with the measured data from the reverberation room method and the calculated data from the theory satisfying the mass law of sound isolation material. The resulted trends of the sound transmission losses versus frequencies for several different sound isolation sheets were almost same for each other and agreed quite well in both methods except at some low frequency region. From the experimental results, it was found that the accuracy of sound isolation capability obtained by two-microphone impedance tube method depends upon the microphone spacing, the distance from the first microphone to the test sample surface and the test sample location.

The Experimental Study on the Impact Sound Insulation Floors due to Waste Tire Chip (폐타이어 칩의 바닥충격음 차단성능에 관한 실험적 연구)

  • 양관섭;이세현;김홍열;김승민
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.477-484
    • /
    • 1999
  • This study aims to present proper thickness of resilient mount and pattern of chips for the improvement of impact sound isolation. To achieve this aim, field tests were performed to evaluate the performance of impact sound isolation of pilot samples using waste tire chips against light and heavy-weight impacter, which samples were installed over concrete slabs of an apartment housing. In this study, the experiments were performed by the impact sound level of floors in KS F 2810 "Method for field measurement of floor impact level". As results, a flooring structure using waste tire chips as a resilient mount, with no relation to chip's types, has enhanced performance by 1~2 degree in light impact sound isolation, while it has improvement in heavy impact sound isolation. And fiber-type chips have better performance than granule-type ones when they overlaid concrete slab with 15~20 mm of thickness. For the improvement of impact sound isolation, it is recommended that insulating materials should be applied at joints between floating floors and walls, or floating floors and a doorframes, and also waterproof papers should be used for the effective thickness of resilient mount.ent mount.

  • PDF

Evaluation of Floor Impact Sound Isolation in a Dry Floor System (건식 바닥구조의 바닥충격음 차단성능 평가)

  • You, Jin;Ryu, Jong-Kwan;Jeon, Jin-Young;Lee, Chung-Hwa;Kim, Chul-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.950-953
    • /
    • 2005
  • Floor impact sounds from two different floor systems were measured. One of the two floor systems is a dry floor system (with 150mm concrete slab) and the other is a standard floor system (210mm concrete slab). Real impact sources such as jumping and running of children were used as well as standard impact sources (bang machine, impact ball and tapping machine) to evaluate sound Isolation of the two floor systems. Subjective evaluations of the floor impact sound isolation performance for the two systems were also conducted by the methods of 3 scales & 9 categories, paired comparison and semantic differentials. Measurement results indicate that floor impact sound isolation performance of the dry floor was better than that of standard floor in both cases of real and standard impact sources. The subjects in auditory experiments also evaluated the dry floor as a better sound isolation system.

  • PDF

A Study on the Sound Transmission Loss Measurement of Sound Isolation Sheets (차음시트의 음향투과손실 측정에 관한 연구)

  • Lee, Dong-Hoon;Kang, Moon;Lee, Ju-Weon;Jung, Gab-Cheol;Kwon, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.409-414
    • /
    • 2000
  • A new impedance tube method is presented for the measurement of transmission loss of sound isolation sheets. The two-microphone method based on the sound decomposition theory proposed by Seybert and Ross is reviewed in this impedance tube method, which has been used for the determination of absorption coefficient of absorptive materials as well as transmission loss of automotive mufflers. Sound transmission losses for rubber, polyvinyl and asphalt sheets are measured in an impedance tube and reverberation room facility, respectively. By comparing two measurement methods, the reliability of impedance tube method used in this study is validated. From the experimental results, it is shown that the accuracy of sound isolation capability obtained by the impedance tube method depends upon the microphone spacing and the distance of the first microphone from the test sample surface.

  • PDF

Comparison Between the Dynamic Properties and Noise Isolation Performances for a Floor Impact Isolation Pad (바닥충격음 완충재의 동적특성과 소음저감 성능 비교)

  • Yang, Soo-Young;Lee, Dong-Hoon;Hong, Boung-Kuk;Song, Hwa-Young;Lee, Joo-Wone
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • In this study, the dynamic properties of a floor impact sound isolation pad expressed in terms of the natural frequency, the dynamic stiffness per unit area and the loss factor are measured by the resonant method. By using the measured dynamic properties, the vibration transmissibility diagram is obtained for each isolation pad, which is compared with the values tested by the impact sound sources at the room in an apartment. From the comparative results, it is found that the noise reduction Performances. of isolation pads are closely connected with the natural frequency and the dynamic stiffness per unit area.

  • PDF

Prediction of Isolation Performance of Multi-Layered Sound Barrier System Using the Sound Pressure Radiated by Point Impact (점가진력에 의해 방사된 읍압을 이용한 다중 적층 흡차음 시스템의 차음 성능 예측)

  • 김정수;신재성;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1081-1085
    • /
    • 2002
  • A modeling is developed to predict the isolation performance of sound barrier systems under the sound pressure radiated from excited by point impact. The predicted results are compared with the measured results obtained by using APAMAT II. This instrument provides a combination of structure-borne noise and air-borne noise, which corresponds to rolling noise, by applying the excitation system projected steel balls against the steel sheet.

  • PDF

A Study on the Improvement of the Floor Impact Sound Insulation Performance in Wall Slab Type Apartment (벽식구조 공동주택의 바닥충격음 개선에 대한 연구)

  • Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2012
  • Floor impact sound has been most annoying for years among the noises which are produced in apartment. This study aims to analyze the improvement of floor impact sound by comparing the results of the test which was carried out for the wall slab type apartment and moment frame apartment, and also for the effect of advanced vibration isolation layer. Moment frame structure that main structure consists of column and slab has shown better performance for the heavyweight impact sound comparing with wall slab type structure which is general type in Korea. Stiffness of floor system was raised by reinforcing the stiffness of vibration isolation layer, and it was analyzed how much the floor impact sound performance was improved. The result showed that the reinforced floor had better performance than the existing floor system that uses lightweight porous concrete as vibration isolation material. In addition, a system used wire mesh in mortar showed improvement of floor impact sound than a system without wire mesh, and better performance for the frequency bands lower than 160 Hz which causes floor impact problem in wall slab type apartment.