• Title/Summary/Keyword: Sorption efficiency

Search Result 119, Processing Time 0.029 seconds

Evaluation of Metal Biosorption Efficiency of Laboratory-grown Microcystis under Various Environmental Conditions

  • Pradhan, Subhashree;Singh, Sarita;Rai, Lal Chand;Parker, Dorothy L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.53-60
    • /
    • 1998
  • This study examines the effect of pH, temperature, metal ion concentration and culture density on metal biosorption by the nuisance cyanobacterium Microcystis aeruginosa. Ni biosorption was higher at pH 9.2 than at neutral and acidic pH. In contrast the biosorption of Cu and Zn was maximum at pH 7.0. However, biosorption of Zn was difficult to measure at pH values 9.2 and 10.5, owing to the formation of insoluble complexes. All the test metals (Cu, Zn, and Ni) showed maximum biosorption rate at low culture densities of 40 mg dry wt $1^{-1}$. The biosorption of Cu, Zn, and Ni was maximum at $40^{\circ}C$. However, no worthwhile difference in Zn and Ni sorption was noticed at 4 and $29^{\circ}C$ as compared to $40^{\circ}C$. Of these three metals used Microcystis showed a greater binding capacity ($K_{f}$ value=0.84, Freundlich adsorbent capacity) and accelerated biosorption rate for Cu under various environmental conditions. Fitness of mathematical models on metal biosorption by Microcystis confirmed that the biological materials behave in the same way as physical materials. These results suggest that before using a biosorbent for metal recovery, the environmental requirements of the biosorbent must be ascertained.

  • PDF

Use of Cork Oak Bark for Phosphorous Removal from Wastewater (폐수의 인산염 제거를 위한 굴참나무수피의 활용)

  • Yang, Kyung Min;Kim, Yeong Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.113-119
    • /
    • 2009
  • The feasibility of using cork oak bark for phosphorus removal from wastewater was evaluated in this study. Recently, development of more cost-effective media while maintaining high efficiency in pollutants removal has received concern. Barks have a negative surface charge and, hence, tend to show a high affinity to bind cations, and they need to undergo chemical modification to increase their adsorption capacity of anions. Bark was hydrolyzed by HCl solution and it received modification using an aqueous solution of high molecular weight polyethylenimine(PEI). Surface modification with HCl and PEI resulted in a decrease of specific surface area of the bark from $1.932 m^2/g$ to $1.094 m^2/g$. The adsorption experiments were carried out in batch tests and the data were fitted to the Langmuir isotherm and Freundlich isotherm equations. Phosphate removal rate was higher at the lower solution pH possibly due to the form of phosphate ion in solution. For the initial phosphate concentration of 10 mg/L, maximum adsorption was 20.88 mg P/g at pH 3 and 12.02 mg P/g at pH 5. Mechanism of phosphorus sorption onto the HCl-PEI bark was examined through FT-IR spectrometer. Ion exchange between $NH^+$ and $H_2PO_4{^-}$ appeared to be a key mechanism of phosphate adsorption onto the HCl-PEI bark surface.

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

  • Rallapalli, Phani B.S.;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.495-501
    • /
    • 2020
  • In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

Poly(dimethylsiloxane) Mini-disk Extraction

  • Cha, Eun-Ju;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3603-3609
    • /
    • 2011
  • A novel sampling method of the headspace poly(dimethylsiloxane) (PDMS) mini-disk extraction (HS-PDE) was developed, optimized, validated and applied for the GC/MS analysis of spices flavors. A prototype PDMS mini-disk (8 mm outer diameter, 0.157 mm thickness, 9.4 mg weight) has been designed and fabricated as a sorption device. The technique uses a small PDMS mini-disk and very small volume of organic solvent and less sample size than the solvent extraction. This new HS-PDE method is very simple to use, inexpensive, rapid, requires less labor. Linearities of calibration curves for ${\alpha}$-pinene, ${\beta}$-pinene, limonene and ${\gamma}$-terpinene by HS-PDE combined with GC/MS were excellent having $r^2$ values greater than 0.99 at the dynamic range of 6.06~3500 ng/mL. The limit of detection (LOD) and the limit of quantitation (LOQ) showed very low values. This method exhibited good precision and accuracy. The overall extraction efficiency of this method was evaluated by using partition coefficients ($K_p$) and concentration factors (CF) for several characteristic components from nutmeg and mace. Partition coefficients were in the range from $2.04{\times}10^4$ to $4.42{\times}10^5$, while CF values were 0.88-15.03. HS-PDE was applied successfully for the analysis of flavors compositions from nutmeg, mace and cumin. The HS-PDE method is a very promising sampling technique for the characterization of volatile flavors.

Hevea brasiliensis - A Biosorbent for the Adsorption of Cu(II) from Aqueous Solutions

  • Sivarajasekar, N.
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.199-206
    • /
    • 2007
  • The activated carbon produced from rubber wood sawdust by chemical activation using phosphoric acid have been utilized as an adsorbent for the removal of Cu(II) from aqueous solution in the concentration range 5-40 mg/l. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial copper ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon from rubber wood sawdust were compared with the results of commercial activated carbon (CAC). The adsorption on activated carbon samples increased with contact time and attained maximum value at 3 h for CAC and 4 h for PAC. The adsorption results show that the copper uptake increased with increasing pH, the optimum efficiency being attained at pH 6. The precipitation of copper hydroxide occurred when pH of the adsorbate solution was greater than 6. The equilibrium data were fitted using Langmuir and Freundlich adsorption isotherm equation. The kinetics of sorption of the copper ion has been analyzed by two kinetic models, namely, the pseudo first order and pseudo second order kinetic model. The adsorption constants and rate constants for the models have been determined. The process follows pseudo second order kinetics and the results indicated that the Langmuir model gave a better fit to the experimental data than the Freundlich model. It was concluded that activated carbon produced using phosphoric acid has higher adsorption capacity when compared to CAC.

Effect of the Fate Mechanisms of Phenol on the Remediation Efficiency of In-Situ Capping Applied to Sediment Contaminated by Phenol Chemical Spills (페놀 화학사고 발생으로 오염된 퇴적물에서 페놀의 거동 기작이 원위치 피복의 정화 효율에 미치는 영향)

  • Lee, Aleum;Choi, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.60-70
    • /
    • 2022
  • We evaluated the performance of in-situ capping to prevent the release of phenol, one of hazardous chemicals of concern for their impact on sediment. Sediment near the estuary of Hyeongsan River, Korea, and commercially-available sand were collected to evaluate their physical properties and phenol sorption characteristics. Biodegradation kinetics of phenol spiked into the sediment was evaluated under freshwater and estuarine salinity conditions. These experimental measurements were parameterized and used as input parameters for executing CapSim, a software predicting the performance of in-situ capping. The CapSim simulation demonstrated that capping with 50-cm sand reduced the phenol release by several orders of magnitude over 0.25- and 1-year duration for almost all simulation scenarios. The variables tested, i.e., cap thickness, pore-water movement, and biodegradation rate, showed high correlation to each other to influence the extent of phenol release from sediment to the water column. The findings and the framework employed to evaluate the performance of in-situ capping in this study can be adopted to determine whether in-situ capping is appropriate remedial approach at sediment sites impacted by hazardous chemicals due to accidental spills.

Moisture Gettering by Porous Alumina Films on Textured Silicon Wafer (실리콘 표면에 증착된 다공성 알루미나의 수분 흡착 거동)

  • Lim, Hyo Ryoung;Eom, Nu Si A;Cho, Jeong-Ho;Choa, Yong-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.401-406
    • /
    • 2015
  • Getter is a class of materials used in absorbing gases such as hydrogen and moisture in microelectronics or semiconductor devices to operate properly. In this study, we developed a new device structure consisting of porous anodized alumina films on textured silicon wafer, which have cost efficiency in materials and processing aspects. Anodic aluminum oxide (AAO) with controlled pore sizes can be applied to a high-efficiency moisture absorber due to the high surface area and OH- saturated surface property. The moisture sorption capacity was 2.02% (RH=35%), obtained by analyzing isothermal adsorption/desorption curve.

A study on Surfactants for Electrokinetic Soil Remediation (동전기적 토양복원에 적합한 계면활성제의 선정)

  • 이현호;박지연;김상준;이유진;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Three different surfactants, APG, Brij30, and SDS, were tested to study the characteristics of sorption on soil surfaces, washing ability, biodegradability, and electrokinetic removal. Kaolinite and phenanthrene were selected as a model soil and a representative HOC, respectively. Phenanthrene was sorbed on kaolinite up to 2,200 mg/kg dry soil. The APG, Brij30, and SDS were sorbed on soil to 40, 7, and 4g/kg soil, respectively. The washing ability of phenanthrene was in order of Brij30>SDS>APG. The biodegradability tested with sludge was in order of APG>Brij30>SDS. In the electrokinetic test, the highest removal efficiency was obtained with APG that exhibited the highest electroosmotic flow. To increase the removal efficiency of HOC in the electrokinetic remediation, the most important factor was the selection of surfactant which maximized the electroosmotic flow.

Changes in CO2 Absorption Efficiency of NaOH Solution Trap with Temperature

  • Park, Se-In;Park, Hyun-Jin;Yang, Hye In;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.554-561
    • /
    • 2017
  • Under the projected global warming, release of carbon as $CO_2$ through soil organic matter decomposition is expected to increase. Therefore, accurate measurement of $CO_2$ released from soil is crucial in understanding the soil carbon dynamics under increased temperature conditions. Sodium hydroxide (NaOH) traps are frequently used in laboratory soil incubation studies to measure soil respiration rate, but decreasing $CO_2$ gas solubility with increasing temperature may render the reliability of the method questionable. In this study, the influences of increasing temperature on the $CO_2$ capture capacity of NaOH traps were evaluated under $5{\sim}35^{\circ}C$ temperature range at $10^{\circ}C$ interval. Two closed-chamber experiments were performed where NaOH traps were used to capture $CO_2$ either released from acidified $Na_2CO_3$ solution or directly injected into the chamber. The sorption of ambient $CO_2$ within the incubators into NaOH traps was also measured. The amount $CO_2$ captured increased as temperature increased within 2 days of incubation, suggesting that increased diffusion rate of $CO_2$ at higher temperatures led to increases in $CO_2$ captured by the NaOH traps. However, after 2 days, over 95% of $CO_2$ emitted in the emission-absorption experiment was captured regardless of temperature, demonstrating high $CO_2$ absorption efficiency of the NaOH traps. Thus, we conclude that the influence of decreased $CO_2$ solubility by increased temperatures is negligible on the $CO_2$ capture capacity of NaOH traps, supporting that the use of NaOH traps in the study of temperature effect on soil respiration is a valid method.

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.