Browse > Article
http://dx.doi.org/10.14478/ace.2020.1058

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate  

Rallapalli, Phani B.S. (Department of Integrated Environmental Systems, Pyeongtaek University)
Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University)
Publication Information
Applied Chemistry for Engineering / v.31, no.5, 2020 , pp. 495-501 More about this Journal
Abstract
In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.
Keywords
Eutrophication; Phosphate removal; Metal-organic frameworks; Kinetics; Chemisorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. B. Joshua, N. Edmond, D. O. Irina, M. Andrew, and W. G. David, A Review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems, Front. Environ. Sci., 6, 1-15 (2018).   DOI
2 P. Loganathan, V. Saravanamuthu, J. Kandasamy, and S. B. Nanthi, Removal and recovery of phosphate from water using sorption, Crit. Rev. Environ. Sci. Technol., 44, 847-907 (2014).   DOI
3 R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, and T. Hirotsu, Selective adsorption of phosphate from sea water and wastewater by amorphous zirconium hydroxide, J. Colloid Interface Sci., 297, 426-433 (2006).   DOI
4 G. Zhang, H. Liu, R. Liu, and J. Qu, Removal of phosphate from water by a Fe-Mn binary oxide adsorbent, J. Colloid Interface Sci., 335, 168-174 (2009).   DOI
5 S. Karaca, A. Gurses, M. Ejder, and M. Acikyildiz, Adsorptive removal of phosphate from aqueous solutions using raw and calcined dolomite, J. Hazard. Mater., B128, 273-279 (2006).
6 S. M. Ashekuzzaman and J. Jia-Qian, Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water, Chem. Eng. J., 246, 97-105 (2014).   DOI
7 J. K. Edzwald, D. C. Toensing, and M. C. Y. Leung, Phosphate adsorption reactions with clay minerals, Environ. Sci. Technol., 10, 485-490 (1976).   DOI
8 R. Dariush, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem., 3, 55-60 (2013).   DOI
9 D. Shilin, F. Dexin, P. Zishan, L. Bin, K. Li, W. Han, Z. Qian, S. Qiushi, and J. Fangying, Immobilization of powdery calcium silicate hydrate via PVA covalent cross-linking process for phosphorus removal, Sci. Total Environ., 645, 937-945 (2018).   DOI
10 M. Hamou, A. Hammou, A. Mustapha, and M. Hamid, Critical of linear and nonlinear equations of pseudo-first order and pseudo- second order kinetic models, Karbala Int. J. Mod. Sci., 4, 244-254 (2018).   DOI
11 Z. Ren, L. Shao, and G. Zhang, Adsorption of phosphate from aqueous solution using an iron-zirconium binary oxide sorbent, Water, Air Soil Pollut., 223, 4221-4231 (2012).   DOI
12 M. Yang, J. Lin, Y. Zhan, Z. Zhu, and H. Zhang, Immobilization of phosphorus from water and sediment using zirconium-modified zeolites, Environ. Sci. Pollut. Res. Int., 22, 3606-3619 (2015).   DOI
13 H. Liu, X. Sun, C. Yin, and C. Hu, Removal of phosphate by mesoporous ZrO2, J. Hazard. Mater., 151, 616-622 (2008).   DOI
14 Y. Tang, E. Zong, H. Wan, Z. Xu, S. Zheng, and D. Zhu, Zirconia functionalized SBA-15 as effective adsorbent for phosphate removal, Microporous Mesoporous Mater., 155, 192-200 (2012).   DOI
15 Y. Su, H. Cui, Q. Li, S. Gao, and J. K. Shang, Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles, Water Res., 47, 5018-5026 (2013).   DOI
16 K. B. Biplob, I. Katsutoshi, N. G. Kedar, H. Hiroyuki, O. Keisuke, and K. Hidetaka, Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium, Bioresour. Technol., 99, 8685-8690 (2008).   DOI
17 R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, and T. Hirotsu, Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide. J. Colloid Interface Sci., 297, 426-433 (2006).   DOI
18 X. Cui, X. Dai, K. Y. Khan, T. Li, X. Yang, and Z. He, Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata, Bioresour. Technol., 218, 1123-1132 (2016).   DOI
19 R. Awual, A. Jyo, S. A. El-Safty, M. Tamada, and N. Seka, A weak-fibrous anion exchanger effective for rapid phosphate removal from water, J. Hazard. Mater., 188, 164-171 (2011).   DOI
20 E. Ou, J. Zhou, S. Mao, J. Wang, F. Xia, and L. Min, Higly efficient removal of phosphate by lanthanum-doped mesoporous $SiO_2$, Colloids Surf. A. Physicochem. Eng. Aspects, 308, 47-53 (2007).   DOI
21 M. Wu, H. L. Ye, F. Q. Zhao, and B. Z. Zeng, High-quality metal-organic framework ZIF-8 membrane supported on electrodeposited ZnO/2-methylimidazole nanocomposite: Efficient adsorbent for the enrichment of acidic drugs, Sci. Rep., 7, 39778 (2017).   DOI
22 K. G. Ravindra, B. Sushmita, K. G. Pavan, and M. C. Chattopadhyaya, Remediation technologies for phosphate removal from wastewater: An overview. In J. A. Daniels (Ed), Advances in Environmental Research, Nova Science Publishers, Inc., 36, 177-200 (2014).
23 H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341, 974 (2013).
24 B. J. Yao, W. L. Jiang, Y. Dong, Z. X. Liu, and Y. B. Dong, Post-synthetic polymerization of UiO-66-$NH_2$ nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation, Chem. Eur. J., 22, 10565-10571 (2016).   DOI
25 Z. Q. Xie, W. W. Xu, X. D. Cui, and Y. Wang, Recent progress in metal-organic frameworks and their derived nanostructures for energy and environmental applications, Chem. Sus. Chem., 10, 1645-1663 (2017).   DOI
26 R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, and T. Hirotsu, Synthesis and phosphate uptake behavior of $Zr^{4+}$ incorporated MgAl-layered double hydroxides, J. Colloid Interface Sci., 313, 53-63 (2007).   DOI
27 E. Zong, D. Wei, H. Wan, S. Zheng, Z. Xu, and D. Zhu, Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide, Chem. Eng. J., 221, 193-203, (2013).   DOI
28 F. Dexin, H. Liping, F. Zhuoyao, Z. Qian, S. Qiushi, L. Yimeng, X. Xiaoyi, and I. J. Fangy, Evaluation of porous calcium silicate hydrate derived from carbide slag for removing phosphate from wastewater, Chem. Eng. J., 354, 1-11 (2018).   DOI
29 P. W. Seo, N. A. Khan, and S. H. Jhung, Removal of nitroimidazole antibiotics from water by adsorption over metal-organic frameworks modified with urea or melamine, Chem. Eng. J., 315, 92-100 (2017).   DOI
30 S. Aslam, F. Subhan, Z. F. Yan, U. J. Etim, and J. B. Zeng, Dispersion of nickel nanoparticles in the cages of metal-organic framework: An efficient sorbent for adsorptive removal of thiophene, Chem. Eng. J., 315, 469-480 (2017).   DOI
31 G. Wissmann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider, and P. Behrens. Modulated synthesis of Zr-fumarate MOF, Microporous Mesoporous Mater., 152, 64-70 (2012).   DOI
32 K. Y. A. Lin, S. Y. Chen, and A. P. Jochems, Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine, Mater. Chem. Phys., 160, 168-176, (2015).   DOI
33 X. Zhu, B. Li, J. Yang, Y. Li, W. Zhao, J. Shi, and J. Gu, Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UIO-67, ACS Appl. Mater. Interfaces, 7, 223-231 (2015).   DOI
34 F. Ke, C. Peng, T. Zhang, M. Zhang, C. Zhou, H. Cai, J. Zhu, and X. Wan, Fumarate-based metal-organic frameworks as a new platform for highly selective removal of fluoride from brick tea, Sci. Rep., 8, 939 (2018).   DOI
35 J. Das, B. S. Patra, N. Baliarsingh, and K. M. Parida, Adsorption of phosphate by layered double hydroxides in aqueous solutions, Appl. Clay Sci., 32, 252-260 (2006).   DOI