• Title/Summary/Keyword: Sorbent()

Search Result 298, Processing Time 0.029 seconds

Performance Evaluation of K-based Solid Sorbents Depending on the Internal Structure of the Carbonator in the Bench-scale CO2 Capture Process (벤치급 CO2 포집공정에서 흡수반응기의 내부구조에 따른 K-계열 고체흡수제의 성능평가)

  • Kim, Jae-Young;Lim, Ho;Woo, Je Min;Jo, Sung-Ho;Moon, Jong-Ho;Lee, Seung-Yong;Lee, Hyojin;Yi, Chang-Keun;Lee, Jong-Seop;Min, Byoung-Moo;Park, Young Cheol
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.419-425
    • /
    • 2017
  • In this study, the performance characteristics of the K-based sorbents (KEP-CO2P2, KEPCO RI, Korea) has been studied in relation with the heat exchanger structure and shape in a mixing zone of the carbonator in the bench-scale dry $CO_2$ capture process. Two types of heat exchangers (different structure and shape) were used in the carbonator as CASE 1 and CASE 2, in which the experiment has been continuously performed under the same operating conditions. During the continuous operation, working temperature of carbonator was 75 to $80^{\circ}C$, that of regenerator was 190 to $200^{\circ}C$, and $CO_2$ inlet concentration of the feed gas was 12 to 14 vol%. Especially, to compare the dynamic sorption capacity of sorbents, the differential pressure of the mixing zone in the carbonator was maintained around 400 to 500 mm $H_2O$. Also, solid samples from the carbonator and the regenerator were collected and weight variation of those samples was evaluated by TGA. The $CO_2$ removal efficiency and the dynamic sorption capacity were 64.3% and 2.40 wt%, respectively for CASE 1 while they were 81.0% and 4.66 wt%, respectively for CASE 2. Also, the dynamic sorption capacity of the sorbent in CASE 1 and CASE 2 was 2.51 wt% and 4.89 wt%, respectively, based on the weight loss of the TGA measurement results. Therefore, It was concluded that there could be a difference in the performance characteristics of the same sorbents according to the structure and type of heat exchanger inserted in the carbonator under the same operating conditions.

Characterization of Arsenic Sorption on Manganese Slag (망간슬래그의 비소에 대한 수착특성 연구)

  • Seol, Jeong Woo;Kim, Seong Hee;Lee, Woo Chun;Cho, Hyeon Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.229-244
    • /
    • 2013
  • Arsenic contamination may be brought about by a variety of natural and anthropogenic causes. Among diverse naturally-occurring chemical speciations of arsenic, trivalent (As(III), arsenite) and pentavalent (As(V), arsenate) forms have been reported to be the most predominant ones. It has been well known that the behavior of arsenic is chiefly affected by aluminum, iron, and manganese oxides. For this reason, this study was initiated to evaluate the applicability of manganese slag (Mn-slag) containing high level of Mn, Si, and Ca as an efficient sorbent of arsenic. The main properties of Mn-slag as a sorbent were investigated and the sorption of each arsenic species onto Mn-slag was characterized from the aspects of equilibrium as well as kinetics. The specific surface area and point of zero salt effect (PZSE) of Mn-slag were measured to be $4.04m^2/g$ and 7.73, respectively. The results of equilibrium experiments conducted at pH 4, 7 and 10 suggest that the sorbed amount of As(V) was relatively higher than that of As(III), indicating the higher affinity of As(V) onto Mn-slag. As a result of combined effect of pH-dependent chemical speciations of arsenic as well as charge characteristics of Mn-slag surface, the sorption maxima were observed at pH 4 for As(V) and pH 7 for As(III). The sorption of both arsenic species reached equilibrium within 3 h and fitting of the experimental results to various kinetic models shows that the pseudo-second-order and parabolic models are most appropriate to simulate the system of this study.

Economic Evaluations of CO2 Capture Process from Power Plant Flue Gas Using Dry Sorbents (건식 흡수제를 이용한 발전소배가스의 CO2 회수공정 경제성분석)

  • Shin, Byung Chul;Kwak, Hyun;Lee, Kwang Min
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.646-653
    • /
    • 2012
  • We studied the economic evaluations on Korea Institute of Energy Research (KIER)'s $CO_2$ capture process using dry sorbents, and compared the results with those of comparable technologies. Capital and operating costs of the $CO_2$ capture system for 500 MW coal fired power plant were estimated to determine the economic feasibility. LCOE (Levelized Cost of Energy) and $CO_2$ capture cost appeared 32.46$/MWh and 28.15$/ton$CO_2$, respectively. The internal rate of return (IRR), the net present values (NPV), and the payback period (PBP), were calculated by assuming several variables. As the result of calculation, IRR of KIER's $CO_2$ capture system was 15%, NPV was calculated 6,631,000$, and PBP was 5.93 years at $50/t$CO_2$ of CER price. Consequently, this process can compete with other comparative processes using dry sorbents.

Analysis of volatile aroma compounds from vanilla perfume using headspace disk type monolithic material sorptive extraction (시료상층부 원판 형태 단일 다공성 물질을 이용한 바닐라 향수의 휘발성 아로마 성분 추출 분석)

  • Son, Hyun-Hwa;Lee, Dong-Sun
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.421-428
    • /
    • 2011
  • In this study, headspace disk type monolithic material sorptive extraction (HS-MMSE) was developed, validated and applied to the analysis of volatile aroma compounds from vanilla perfume by gas chromatography -mass spectrometry (GC/MS). HS-MMSE uses monolithic material (MonoTrap) based on silica bonded with octadecyl silane (ODS) and activated carbon as a sorbent. Aroma compounds was adsorbed onto the MonoTrap in headspace and extracted by only 100 ${\mu}L$ of solvent. Total 12 volatile compounds from vanilla perfume were successfully analyzed using HS-MMSE. The influence of extractive parameters was investigated and optimized, using benzyl acetate, linalyl acetate, vanillin, ethyl vanillin as target compounds. Under the optimum condition, the limit of detection (S/N = 3) and the limit of quantification (S/N = 10) of proposed method for the target compounds were obtained within the range of 8.35~13.76 ng and 27.82~45.88 ng, respectively. The method showed good linearity with correlation coefficient more than 0.9888, satisfactory recovery and reproducibility. These results showed that HS-MMSE using disk type MonoTrap is a new promising technique for the analysis of volatile aroma compounds from vanilla perfume.

Critical Evaluation of and Suggestions for the VOCs Measurement Method Established as the Korean Indoor Air Quality Standard Method (실내공기질 공정시험법 중 VOCs 측정방법의 문제점 고찰 및 개선방안에 관한 연구)

  • Ye, Jin;Jung, Dong-Hee;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.586-599
    • /
    • 2014
  • During the last two decades, indoor air quality and volatile organic compounds (VOCs) have been of concern in Korean society due to their nature of potential health impacts. In order to investigate the pollution levels of VOCss in indoor environments, establishment of a solid test method for monitoring the airborne VOCss is essential. In Korea, a method based on adsorbent sampling and GC analysis coupled with thermal desorption was proclaimed as the Korea Standard Method for Indoor Air Quality Test. This study was carried out to examine some inherent problems of the VOCs measurement method. The VOCs method does not describe in detail preparing the standard samples. The standard samples may be prepared by impregnation of either liquid standard solutions or a mixture of standard gases. In this study, we investigated the optimal temperature condition for transferring the liquid standards onto a standard adsorbent tube. As a result, keeping the impregnation temperature at $250^{\circ}C$ will be recommended in regard of the boiling points of multiple target analytes and the thermal stability of the adsorbent. We also demonstrated some problems associated with handling of a syringe used for transferring the standard solutions onto the adsorbent tubes, and a best way to get rid of the syringe problems was suggested. Finally, a number of field works were conducted to evaluate the performance of adsorbent sampling methods. Comparison of different adsorbent tubes, i.e. tube packed with single sorbent (Tenax) and double sorbents (Tenax with Carbotrap), revealed that 30 to 40% differences between the two groups, implying that sampling efficiency is depending on the volatility and the strength of adsorbents. However, duplicate precisions for VOCs sampling with a same type of adsorbent and at same flow rates appeared to be satisfactory to be all within 20%, which is a quality control guideline. Distributed volume precisions were also found to be within a guideline value, 25%, although the precision was in general inferior to the duplicate precision. The Korea indoor VOCs test method should be more refined and improved in many aspects, particularly procedure and instrumentation for preparing the standard samples and specification of quality control assessment.

Physicochemical Properties and Cu Sorption of the Biochar Derived from Woody Biomass (목질계 바이오매스에서 생산된 바이오차의 물리화학적 특성 및 Cu 흡착제거 특성)

  • Park, Yi-Kyung;Yang, Jae-Kyu;Na, Jung-Kyun;Jung, Jong-Am;Jung, Hyung-Jin;Kang, Chang-Hwan;Ko, Kyung-Min;Kim, Wan-Hee;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2012
  • In this study, the adsorption of $Cu^{2+}$ from aqueous solution by the biochar derived from woody biomass at different pyrolysis temperatures has been investigated. The woody biomass wastes used in this study were branch of willow ($Salix$ $koreensis$ $Andersson$) and bark of chestnut ($Castanea$ $crenata$ $var.$ $dulcis$). Three biochar samples prepared by heating each biomass at temperature of $300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$were tested for the adsorption capacity of Cu. Also the physicochemical properties of the developed biochars were studied using different characterization techniques such as FT-IR, SEM, BET surface area, and cation exchange capacity (CEC). The adsorption of Cu could be well described by Langmuir model for both willow and chestnut biochars with $R^2{\geq}0.98$. The maximum adsorption capacities of the biochar produced at $700^{\circ}C$ from the Langmuir equation were found to be 12.5 mg $g^{-1}$ and 16.9 mg $g^{-1}$ for willow and chestnut, respectively. Chestnut biochar was found to interact more effectively with the active sites available for Cu, resulting higher removal of Cu(II) than wiloow biochar. Ion exchange and surface complexation found to be the main mechanisms involved in the adsorption process. This study demonstrated the feasibility of the biochars derived from woody biomass to be as a low-cost potential adsorbent for heavy metals as Cu(II) removal in aquatic system.

Effects of Multiple-CycleOperation and $SO_2$ Concentration on the Absorption Characteristics of $CO_2$ by means of Limestone (석회석의 $CO_2$의 흡수특성에 미치는 흡수/재생 반응의 반복횟수와 $SO_2$ 농도의 영향)

  • Ryu Ho-Jung
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.203-211
    • /
    • 2005
  • To investigate the effects of the number of multiple-cycles and $SO_2$ concentration on $CO_2$ absorption characteristics by means of limestone, $CO_2$ capture capacity has been measured in a bubbling fluidized bed reactor (0.1m 1.D., 1.17m high). Danyang limestone was used as a $CO_2$ sorbent and the number of cycles $(\~10th\;cycle)$ and $SO_2$ concentrations (0, 2000, 4000 ppm) were considered as variables. The measured $CO_2$ capture capacity decreased as the number of cycles increased and it showed $50\%$ or initial value after 10 cycles. Moreover, $CO_2$ rapture capacity decreased with 501 concentrations. For three different $SO_2$ concentrations, the total CaO utilization was almost the same but $SO_2$ capture capacity increased and $CO_2$ capture capacity decreased as $SO_2$ concentration increased. These results suggest that $SO_2$ capture reaction is predominant over $CO_2$ capture reaction in the simultaneous $CO_2/SO_2$ capture conditions.

Immunological Monitoring of Urinary Aflatoxins and Estimation of Liver Cancer Incidence in Koreans

  • Choi, Mun-Jung;You, Young-Chan;Kim, Hyung-Sik;Lee, Byung-Mu
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.105-110
    • /
    • 1996
  • Polyclonal antiserum R101 against aflatoxin $B_1$ ($AFB_1$) was raised in New Zealand white rabbits after injection of bovine serum albumin-$AFB_1$ conjugate. Competitive ELISA (enzyme linked immuno-sorbent assay) demonstrated that antiserum R101 has the highest binding for $AFB_1$ (50% inhibition at 170 fmol) and aflatoxicol II (50% inhibition at 112 fmol). It also reacts with other aflatoxins such as $AFB_2$, $AFG_1$, $AFG_2$, and aflatoxin metabolites ($AFM_1$, $AFM_2$, $AFP_1$, and $AFQ_1$), but it does not cross-react with $AFG_2a$. Using this antiserum, aflatoxins were quantitated in 100 urine samples of undergraduate students at the College of Pharmacy, Sung Kyun Kwan University, Republic of Korea. By ELISA, $AFB_1$ and its metabolites were detected in human urine samples (N=100, male=89, female=11, ages=20~31 yrs) with a range of 1.4~200.6 ng/kg/day (mean$\pm$SD=$18.11{\pm}33.01\;ng\;AFB_1/kg/day$ in males, $3.82{\pm}2.65\;ng/kg/day$ in females). Assuming that urinary excretion is about 7.6% of $AFB_1$ intake (Groopman et al., 1992), we estimated that Koreans were daily exposed to a total dietary $AFB_1$ of $240.20{\pm}438.67\;ng/kg/day$ in males and $50.35{\pm}29.88\;ng/kg/day$ in females, respectively. When the human monitoring data was applied to a linear regression model of Y=21.67X-10.04 {Y=liver cancer incidence per 100,000, X=Log $AFB_1$ intake (ng/kg/day), r=0.99} developed from previously reported epidemiological data, calculated liver cancer incidences attributed to $AFB_1$ exposure were 41.56/100,000 in males and 26.84/100,000 in females. The incidences were similarly correlated with liver cancer mortality rates of 43.43/100,000 in males and 11.23/100,000 in females in Korea. These results suggest that aflatoxin exposure may be an important risk factor for the high incidence of liver cancer in Korea.

  • PDF

Development of Real-time and Simultaneous Quantification of Volatile Organic Compounds in Ambient with SIFT-MS (Selected Ion Flow Tube-Mass Spectrometry) (선택적다중이온질량분석기를 이용한 대기 중 휘발성유기화합물 실시간 동시분석법 개발 및 적용)

  • Son, Hyun Dong;An, Joon Geon;Ha, Sung Yong;Kim, Gi Beum;Yim, Un Hyuk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.393-405
    • /
    • 2018
  • Volatile organic compounds (VOCs) are representative air pollutants due to their detrimental effects on human health and their role in formation of secondary organic aerosols. Assessments and monitoring programs of VOCs using periodic grab sampling like Tedlar bags, canisters, and sorbent traps provide limited information, often with delay times of days or weeks. Selected ion flow tube mass spectrometry (SIFT-MS) is an emerging analytical technique for the real-time quantification of VOCs in air. It relies on chemical ionization of the VOCs molecules in air introduced into helium carrier gas using $H_3O^+$, $NO^+$, and $O_2{^+}$ precursor ions. Real-time monitoring method of 60 VOCs in the ambient air was developed using TO-15 standard gas mixture. Calibration curves, method detection limit, and quantitation reproducibility of the target compounds were tested. Dynamic dilution system was used to dilute standard gas from 0.174 ppbv to 100 ppbv, where calibration curves showed good linearity with $r^2$> 0.95 in all target analytes. Limit of detection (LOD) all compounds were sub ppbv, and some halogenated compounds showed pptv levels. Seven consecutive analyses of target compounds showed good repeatability with relative standard deviation of less than 10%. One day monitoring of VOCs in ambient air was conducted in Geoje. Average concentration of target VOCs in Geoje were relatively lower than other regions, among which formaldehyde showed the highest concentration ($15.4{\pm}5.78ppbv$). SIFT-MS provided good temporal resolution data (1 data per 3.2 minute), which can be used for identifying ephemeral short-term event. It is expected that SIFT-MS will be a versatile monitoring platform for VOCs in ambient air.

Desorption Efficiencies and Storage Stabilities of Ketones in Work Environment (작업장에서 발생되는 케톤류 유기화합물의 탈착효율 및 저장안정성)

  • Kim, Kangyoon;Choi, Sungpil;Ha, Chul-Joo;Choi, Ho-Chun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.211-221
    • /
    • 2006
  • This study was performed to compare with desorption efficiency and storage stability of CSC and CMS tubes for Ketones in workplace air. 1. The best desorbing solution for CSC tube was 1 % or 3 % dimethylformamide(DMF) in carbon disulfide($CS_2$). The desorption efficiencies were 96.40 % for cyclohexanone, 94.86 % for acetone, 96.96 % for methyl ethyl ketone(MEK), 103.44 % for methyl isobutyl ketone(MIBK), 100.17 % for methyl amyl ketone(MAK), 100.43 % for methyl butyl ketone(MBK), 97.01 % for toluene and 99.33 % for trichloroethylene(TCE). 2. The best desorbing solution for CMS tube was 1 % or 3 % DMF in $CS_2$. The desorption efficiencies were 96.42 % for cyclohexanone, 98.53 % for acetone, 99.67 % for MEK, 105.48 % for MIBK, 100.13 % for MAK, 100.13 % for MBK, 95.42 % for toluene and 98.15 % for TCE. 3. In the storage condition at room temperature($20^{\circ}C$), the recovery rates of cyclohexanone and MEK on CSC tube were rapidly decreased 30.9 % and 50.9 % after 4 weeks, respectively. The recovery rates of all of 6 ketones and 2 nonpolar solvents were shown over 80 % after 1 week in the storage condition of refrigerate temperature($-4^{\circ}C$), and were kept over 80 % after 4 weeks in the storage condition of freezer temperature($-20^{\circ}C$). 4. The recovery rates of cyclohexanone on CMS tube were 80.6 % for 1 week after and 60.5 % for 4 weeks after at room temperature($20^{\circ}C$). The recovery rates of cyclohexanone were shown 80.6 % for 1 week after and 60.5 % for 4 weeks after at $-4^{\circ}C$, and of 6 ketones and 2 non-polar solvents were kept stable over 85 % at $-4^{\circ}C$ and over 97 % at $-20^{\circ}C$ for 4 weeks after. In conclusion, the best desorbing solution was 1 % or 3 % DMF in $CS_2$ and more appropriate sorbent tube for ketones and non-polar solvents was CMS than CSC. We recommend CSC tube would be useful if the samples analyzed within 1 week because CMS tubes are more expensive than CSC tubes. However, if the storage time is needed more than 3 weeks, CMS tubes should be suitable and the storage condition should be below $-20^{\circ}C$.