• Title/Summary/Keyword: Solution process

Search Result 7,396, Processing Time 0.035 seconds

Separation of Cd(II) from Aqueous Solutions by A New Consecutive Process Consisting of Supported Liquid Membrane and Electrodialysis

  • Altin, Sureyya;Altin, Ahmet
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Supported liquid membrane process usually is used for recovering or enrichment of valuable metals in the industrial wastewater. But, even if the metals in the wastewater was separated with high chemical selectivity, it cannot be enough concentrated since separation performance of supported liquid membrane (SLM) process is limited by concentration gradient between feed solution and stripping solution. If metal concentration in the stripping solution to be enough low, transport of metal through membrane can be accomplishment constantly. Therefore, Electrodialysis (ED) has been placed after SLM process and the stripping solution of SLM was used as the feed solution for the ED process. Transport of ions in the solutions is successfully performed by ED process. Thus, the metal concentration in the stripping solution does not rise as to stop ion transport. Besides, valuable metals easily are concentrated by ED process for re-use. In this study, effects of operation parameters like initial Cd(II) concentration, HCl concentration in the feed solution of SLM and applied voltage are investigated on separation efficiency, flux and permeability of the both processes. As the feed solution concentration increased, all performance values has increased. When initial concentration of 100 mg/L is used, separation performances (SP) are 55% and 70%, for SLM and consecutive process, respectively. The best HCl concentration in the feed solution of SLM has determined as 2 M, in this conditions SP are 64% and 72%, for SLM and consecutive process, respectively. With increased of applied voltage on ED process, SP of the consecutive process has been raised from 72% to 83%. According to the obtained experimental data, consecutive process has better separation performance than SLM. When the separation performances of both processes were compared for the same operating conditions, it was determined higher the separation efficiency, permeability and flux values of the consecutive process, 8%, 9% and %10.6, respectively. Consequently, the use of the consecutive process increases the performance efficiency of both processes. The consecutive process studied has quite a good chemical separation efficiency, and enrichment capability. Moreover, this process requires few water and energy.

THE CHANGE OF FILM CHARACTERISTICS ACCORDING TO THE PROCESS OF USING TIME OF PROCESSING SOLUTION (현상액의 사용 시일 경과에 따른 필름 특성의 변화)

  • Chung Moon Sung;Chung Hyun Dae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.1
    • /
    • pp.128-136
    • /
    • 1992
  • This study was undertakened to investigate the change of image characteristics on dental films according to the process of using time of processing solution in automatic processor. Base + fog density, film density and subject contrast were measured with the digital densitometer, the pH of developing and fixing solution were measured with Digital pH / ION Meter. The following results were obtained: 1. Base + fog density was increased with the process of using time of the processing solution and was over the maximum permissible base + fog density 0.25 from the 3rd day. 2. Film density was increased with the process of using time of the processing solution. 3. Subject contrast was decreased with the process of using time of the processing solution. 4. The pH of the developing solution was decreased with the process of using time, the pH of the fixing solution was increased.

  • PDF

Nanoparticles Synthesis and Modification using Solution Plasma Process

  • Mun, Mu Kyeom;Lee, Won Oh;Park, Jin Woo;Kim, Doo San;Yeom, Geun Young;Kim, Dong Woo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.164-173
    • /
    • 2017
  • Across the most industry, the demand for nanoparticles is increasing. Therefore, many studies have been carried out to synthesize nanoparticles using various methods. The aim of this paper is to introduce an industry-applicable as well as financially and environmentally effective solution plasma process. The solution plasma process involves fewer chemicals than the traditional kit, and can be used to replace many of the chemical agents employed in previous synthesis of nanoparticles into plasma. In this study, this process is compared to the wet-reaction process that has thus far been widely used in the most industry. Furthermore, the solution plasma process has been classified into four different types (in-solution, out of solution, direct type, and remote type), according to its plasma occurrence position and plasma types. Thus, the source of radicals, nanoparticle synthesis, and modification methods are explained for each design. Lastly, unlike nanoparticles with hydrophilic functional groups that are made inside the solution, a nanoparticle synthesis and modification method to create a hydrophobic functional group is also proposed.

New Material Architecture and Its Process Integration for a-Si TFT Array Manufacturing

  • Song, Jean-Ho;Park, Hong-Sick;Kim, Sang-Gab;Cho, Hong-Je;Jeong, Chang-Oh;Kang, Sung-Chul;Kim, Chi-Woo;Chung, Kyu-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.552-555
    • /
    • 2002
  • In order to achieve higher performance and low cost a-Si TFT-LCD panel, new material architecture and its process integration for a-Si TFT array manufacturing method were developed. Material combination of low resistant dry-etchable metal and new pixel electrode under currently adopted 4 mask process made it possible to get more-simplified manufacturing method and better device performance for the a-Si TFT-LCD application. Proposed 4 mask process architecture with optimized wet etchants and dry etching process was applicable to various devices such as notebook, monitor and TV.

  • PDF

Discharge characteristics of MgO layer prepared via aqueous solution process

  • Choi, Hak-Nyun;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.379-382
    • /
    • 2006
  • In this study, an attempt was made to form magnesium oxide layer via aqueous solution route of salt precipitation process. A layer with flake morphology was formed from the process and various dopants were added during the forming process. The films formed were characterized using SEM, XRD, and cathodoluminescence measurement. In addition, the discharge characteristics were evaluated using panel tests. The results indicate that MgO film can be formed via the aqueous solution process successfully, of which characteristics are comparable to those of MgO film formed by e-beam evaporation process.

  • PDF

Research Trends in Powder Materials for Solution-based Transparent Conducting Electrode (용액기반 투명전극 분말 재료 연구 동향)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.153-163
    • /
    • 2017
  • Transparent conducting electrodes (TCEs) are attracting considerable attention as an important component for emerging optoelectronic applications such as liquid crystal displays, touch panels, and solar cells owing to their attractive combination of low resistivity (<$10^{-3}{\Omega}cm$) and high transparency (>80%) in the visible region. The solution-based process has unique properties of an easy fabrication procedure, scalability, and low cost compared to the conventional vacuum-based process and may prove to be a useful process for fabricating TCEs for future optoelectronic applications demanding large scale and flexibility. In this paper, we focus on the introduction of a solution-based process for TCEs. In addition, we consider the powder materials used to fabricate solution-based TCEs and strategies to improve their transparent conducting properties.

Development of New LTPS Process

  • Yi, Chung;Park, Kyung-Min;Choi, Pil-Mo;Kim, Ung-Sik;Kim, Dong-Byum;Kim, Chi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1024-1026
    • /
    • 2004
  • We have developed the five mask $PMOS^1$ and the six mask CMOS process architecture for poly-Si TFT. In order to have a competitive process with that for a-Si TFT, the simple co-planar electrode structure whose data line electrode and pixel electrode are on the same plane was adopted. In addition, RGB + White four color $technology^2$ were applied to achieve high aperture ratio and transmittance. Using the aforementioned process architecture and four color technology, 2.0 inch qCIF transmissive micro-reflectance (TMR) device was successfully fabricated.

  • PDF

Yttrium-Stabilized Zirconia Particles Prepared Using Electro-dialysis of (Zr,Y)OCl2 Aqueous Solution

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.466-471
    • /
    • 2014
  • Hydrous zirconia particles were prepared from $ZrOCl_2$ aqueous solution using an electro-dialysis [ED] process. For the preparation of $(Zr,Y)(OH)_4$ precipitates, 3 mol% $YCl_3$ was added into $ZrOCl_2$ aqueous solution. During the hydrolysis of 0.5 mol/L $(Zr,Y)OCl_2$ solution at $90^{\circ}C$ a slurry solution was obtained. The ED process was used for the removal of chlorine from the slurry solution. Two kinds of slurry solution were sampled at the beginning and end of the ED process. The morphology of hydrous zirconia particles in the solution was observed using an inverted optical microscope and an FE-SEM. The hydrous zirconia particles were nano-crystalline, and easily coagulated with drying. Yttrium stabilized zirconia [YSZ] powder could be obtained by the calcination of $(Zr,Y)(OH)_4$ precipitates prepared from a $(Zr,Y)OCl_2$ solution by the ED process. The coagulated dry powders were shaped and sintered at $1500^{\circ}C$ for 2 h. The sintered body showed a dense microstructure with uniform grain morphology.

Development of the EAI Solution Selection Criteria : Focused on the case of KRA (EAI(Enterprise Application Integration) 도입을 위한 평가기준 개발 적용에 관한 연구 : KRA 적용사례 중심으로)

  • Juhn Sung-Hyun;Park Chan Uk
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.157-171
    • /
    • 2005
  • Recently companies are aggressively Pushing ahead with integrating the systematical applications of internal and external information systems such as Data level, Application level, Process level in the company, Process level between companies. The EAI solution is generally considered as the necessary tool to integrate companies, but the appraisal standard for the EAI solution has not Vet settled in Korea, so the companies have difficulty in deciding whether to adopt the EAI solution or not. Through this report, we first introduce the KRA Project as the best practice in making an application of the settled standard to evaluate and adopt the EAI solution, and then suggest that it can be adapted to companies considering applying to the EAI solution.

  • PDF

Optimum process conditions for supercritical fluid and co-solvents process for the etching, rinsing and drying of MEMS-wafers (초임계 유체와 공용매를 이용한 미세전자기계시스템 웨이퍼의 식각, 세정을 위한 최적공정조건)

  • Noh, Seong Rae;You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • This study aims to select suitable co-solvents and to obtain optimal process conditions in order to improve process efficiency and productivity through experimental results obtained under various experimental conditions for the etching and rinsing process using liquid carbon dioxide and supercritical carbon dioxide. Acetone was confirmed to be effective through basic experiments and used as the etching solution for MEMS-wafer etching in this study. In the case of using liquid carbon dioxide as the solvent and acetone as the etching solution, these two components were not mixed well and showed a phase separation. Liquid carbon dioxide in the lower layer interfered with contact between acetone and Mems-wafer during etching, and the results after rinsing and drying were not good. Based on the results obtained under various experimental conditions, the optimum process for treating MEMS-wafer using supercritical CO2 as the solvent, acetone as the etching solution, and methanol as the rinsing solution was set up, and MEMS-wafer without stiction can be obtained by continuous etching, rinsing and drying process. In addition, the amount of the etching solution (acetone) and the cleaning liquid (methanol) compared to the initial experimental values can be greatly reduced through optimization of process conditions.

  • PDF