• Title/Summary/Keyword: Solution film thickness

Search Result 376, Processing Time 0.034 seconds

An Electrochemical Evaluation on the Corrosion Resistance of Heavy Anticorrosive Paint(II) (중방식 도료의 내식성에 관한 전기 화학적 평가(II))

  • Sung, Ho-Jin;Kim, Jin-Kyung;Lee, Myung-Hoon;Kim, Ki-Joon;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.382-387
    • /
    • 2005
  • An electrochemical evaluation on the corrosion resistance for heavy anticorrosive paint was carried out for 5 kinds of heavy anticorrosive paints such as High solid epoxy(HE), Solvent epoxy(SE), Tar epoxy(TE), Phenol epoxy(PE), and Ceramic epoxy(CE) as parameters of DFT(Dry Film Thickness, 25${\mu}m$50${\mu}m$, solution condition(Flow of Nonflow). Corrosion current density of HE(DFT 50${\mu}m$ in case of flow condition was larger than that of nonflow condition. However, their values of the other anticorrosive paints were decreased compared to the nonflow condition. The values of AC impedance were increased with increasing of DFT regardless of kinds of anticorrosive paints. And the polarization resistance of cyclic voltammogram showed a good tendency to correspond with well the values of AC impedance measurement. HE and CE had a relatively good corrosion resistance than other heavy anticorrosive paint.

  • PDF

Lateral growth of PEO films on Al7050 alloy in 0.1 M NaAlO2

  • Moon, Sungmo;Kim, Gi Yeob
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.4
    • /
    • pp.200-208
    • /
    • 2021
  • This paper investigated generation behavior of micro-arcs and growth behavior of PEO films on the AA7050 disc specimen in 0.1 M NaAlO2 solution under the application of 1200 Hz anodic pulse current. Morphologies, thickness and surface roughness of PEO films were examined at the edge part and central part separately. Micro-arcs were generated first at the edge part and then moved towards the central part with PEO treatment time, indicating lateral growth of PEO films. The lateral growth resulted in uniform PEO thickness of about 5 ㎛ and surface roughness of about 0.5 ㎛. Moving of the arcs from the edge towards the central part appeared only one time and large size arcs were generated at the edge before completing the central part with small size micro-arcs. This suggests that vertical growth starts before completing the lateral growth. Large size arcs generated at the edge resulted in the formation of relatively large size pores within the PEO films on the AA7050 disc specimen.

A Comparative Study on the Precursors for the Atomic Layer Deposition of Silicon Nitride Thin Films (원료물질에 따른 실리콘 질화막의 원자층 증착 특성 비교)

  • Lee Won-Jun;Lee Joo-Hyeon;Lee Yeon-Seong;Rha Sa-Kyun;Park Chong-Ook
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.141-145
    • /
    • 2004
  • Silicon nitride thin films were deposited by atomic layer deposition (ALD) technique in a batch-type reactor by alternating exposures of precursors. XJAKO200414714156408$_4$ or$ SiH_2$$Cl_2$ was used as the Si precursor, $NH_3$ was used as the N precursor, and the deposited films were characterized comparatively. The thickness of the film linearly increased with the number of deposition cycles, so that the thickness of the film can be precisely controlled by adjusting the number of cycles. As compared with the deposition using$ SiCl_4$, the deposition using $SiH_2$$Cl_2$ exhibited larger deposition rate at lower precursor exposures, and the deposited films using $SiH_2$$Cl_2$ had lower wet etch rate in a diluted HF solution. Silicon nitride films with the Si:N ratio of approximately 1:1 were obtained using either Si precursors at $500^{\circ}C$, however, the films deposited using $SiH_2$$Cl_2$ exhibited higher concentration of H as compared with those of the $SiC_4$ case. Silicon nitride thin films deposited by ALD showed similar physical properties, such as composition or integrity, with the silicon nitride films deposited by low-pressure chemical vapor deposition, lowering deposition temperature by more than $200^{\circ}C$.

Crystallinity Control Effects on Vanadium Oxide Films for Enhanced Electrochromic Performances (전기변색 성능 향상을 위한 바나듐산화물 막의 결정성 제어 효과)

  • Kim, Kue-Ho;Bae, Ju-Won;Lee, Tae-Kuen;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.385-391
    • /
    • 2019
  • In the present study, vanadium oxide($V_2O_5$) films for electrochromic(EC) application are fabricated using sol-gel spin coating method. In order to optimize the EC performance of the $V_2O_5$ films, we adjust the amounts of polyvinylpyrrolidone(PVP) added to the solution at 0, 5, 10, and 15 wt%. Due to the effect of added PVP on the $V_2O_5$ films, the obtained films show increases of film thickness and crystallinity. Compared to other samples, optimum weight percent(10 wt%) of PVP led to superior EC performance with transmittance modulation(45.43 %), responding speeds(6.0 s at colored state and 6.2 s at bleached state), and coloration efficiency($29.8cm^2/C$). This performance improvement can be mainly attributed to the enhanced electrical conductivity and electrochemical activity due to the increased crystallinity and thickness of the $V_2O_5$ films. Therefore, $V_2O_5$ films fabricated with optimized amount of PVP can be a promising EC material for high-performance EC devices.

Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows (난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.

Uniformity Prediction of Mist-CVD Ga2O3 Thin Film using Particle Tracking Methodology (입자추적 유동해석을 이용한 초음파분무화학기상증착 균일도 예측 연구)

  • Ha, Joohwan;Park, Sodam;Lee, Hakji;Shin, Seokyoon;Byun, Changwoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.101-104
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity compared to ALD and PECVD methods. It is capable of reacting to the substrate by misting an aqueous solution using ultrasonic waves under vacuum-free conditions of atmospheric pressure. In particular, Ga2O3 is regarded as advanced power semiconductor material because of its high quality of transmittance, and excellent electrical conductivity through N-type doping. In this study, Computational Fluid Dynamics were used to predict the uniformity of the thin film on a large-area substrate. And also the deposition pattern and uniformity were analyzed using the flow velocity and particle tracking method. The uniformity was confirmed by quantifying the deposition cross section with an FIB-SEM, and the consistency of the uniformity prediction was secured through the analysis of the CFD distribution. With the analysis and experimental results, the match rate of deposition area was 80.14% and the match rate of deposition thickness was 55.32%. As the experimental and analysis results were consistent, it was confirmed that it is possible to predict the deposition thickness uniformity of Mist-CVD.

Properties of Static Dissipative Epoxy Composites Loaded with Silane Coupled-ATO Nanoparticles (Silane Coupling제로 표면 처리된 ATO 나노입자를 이용하여 제조된 대전방지 ATO/EPOXY 복합체의 코팅 물성)

  • You, Yo-Han;Kim, Tae-Young;Kim, Jong-Eun;Suh, Kwang-S.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.388-394
    • /
    • 2008
  • For purpose of anti-static film remaining unchanged in the condition of $160^{\circ}C$, organic solvent, acid and base solution $0.01\sim0.03{\mu}m$ particles of Sb doped tin oxide(ATO) were grafted by 3-Glycidyloxypropyltrimethoxysilane(GPTS) for improving interfere bonding force between ATO and epoxy resin. The particles were dispersed in 2-methoxyethanol with YD-I28(Bisphenol A type epoxy resin, Kukdo chemical) and 1-imidazole as hardener. The anti-static solutions were coated on PI film as thickness of $0.1{\mu}m$. Surface resistivity of anti-static film containing conductive polymer became $10^{12}\Omega/\Box$ after 32 hours in $160^{\circ}C$. The surface resistivity of ATO grafted by GPTS / Epoxy coating layer remained as $10^{7.6}\Omega/\Box$ in $160^{\circ}C$ for 7 days. ATO grafted by GPTS / Epoxy coating layer coated on PI film was dipped in acetone for 7 days. The surface resistivity remained unchanged as $10^{7.6}\Omega/\Box$. The anti-static layer dipped in water solutions containing each KOH 10 wt % and $H_2SO_4$ 2 wt% was ultra-sonicated for 10 minutes per once until 30th. The surface resistance of anti-static layer containing ATO grafted by GPTS remained unchanged.

Effects of Calcium Chloride Treatment and Modified Atmosphere Packaging on the Quality Change of 'Fuji' Apple (염화칼슘 처리와 MAP 저장이 '후지' 사과의 품질변화에 미치는 영향)

  • Park, Hyung-Woo;Lee, Seon-Ah;Kim, Yoon-Ho;Kim, Yu-Mi;Cha, Hwan-Soo;Park, Jong-Dae
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.457-461
    • /
    • 2007
  • We investigated the effects of both $CaCl_2$ treatment and modified atmosphere packaging (MAP) (compared with non-packaging on 'Fuji' apples from the Young-Joo region of Korea. Apples were dined into 5% (w/v) $CaCl_2$ solution for 15 min and then packaged with or without LDPE film (thickness: 0.025 mm) before cold storage at $0^{\circ}C$. Weight loss of applies in film packaging was lower than that of non-packaging applies, and the apple firmness resulting from $CaCl_2$ treatment and MAP was better than that of apples receiving control treatment. Also, $CaCl_2$ treatment and MAP resulted in improvements in titratable acidity, soluble solid content (SSC), and decay rate compared to control treatments. However, no significant differences in vitamin C content were found amongst apples receiving various treatment. the results suggest that a combination of postharvest calcium dipping and plastic film packaging may effectively preserve 'Fuji' apples, and that the combined treatment are better than either individual treatment.

Effect of Microstructure on Electrical Properties of Thin Film Alumina Capacitor with Metal Electrode (금속 전극 알루미나 박막 캐패시터의 전기적 특성에 미치는 미세구조의 영향)

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.309-313
    • /
    • 2011
  • The power capacitors used as vehicle inverters must have a small size, high capacitance, high voltage, fast response and wide operating temperature. Our thin film capacitor was fabricated by alumina layers as a dielectric material and a metal electrode instead of a liquid electrolyte in an aluminum electrolytic capacitor. We analyzed the micro structures and the electrical properties of the thin film capacitors fabricated by nano-channel alumina and metal electrodes. The metal electrode was filled into the alumina nano-channel by electroless nickel plating with polyethylene glycol and a palladium catalyst. The spherical metals were formed inside the alumina nano pores. The breakdown voltage and leakage current increased by the chemical reaction of the alumina layer and $PdCl_2$ solution. The thickness of the electroless plated nickel layer was 300 nm. We observed the nano pores in the interface between the alumina layer and the metal electrode. The alumina capacitors with nickel electrodes had a capacitance density of 100 $nF/cm^2$, dielectric loss of 0.01, breakdown voltage of 0.7MV/cm and leakage current of $10^4{\mu}A$.

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process (Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터)

  • Seungmin Lee;Seong Cheol Jang;Ji-Min Park;Soon-Gil Yoon;Hyun-Suk Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.