• Title/Summary/Keyword: Solution Temperature

Search Result 6,373, Processing Time 0.033 seconds

A Vapor Sensor Based on a Porous Silicon Microcavity for the Determination of Solvent Solutions

  • Bui, Huy;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Binh;Dang, Quoc Trung;Do, Thuy Chi;Ngo, Quang Minh;Coisson, Roberto;Pham, Van Hoi
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.301-306
    • /
    • 2014
  • A porous silicon microcavity (PSMC) sensor has been made for vapors of solvent solutions, and a method has been developed in order to obtain simultaneous determination of two volatile substances with different concentrations. In our work, the temperature of the solution and the velocity of the air stream flowing through the solution have been used to control the response of the sensor for ethanol and acetone solutions. We study the dependence of the cavity-resonant wavelength shift on solvent concentration, velocity of the airflow and solution temperature. The wavelength shift depends linearly on concentration and increases with solution temperature and velocity of the airflow. The dependence of the wavelength shift on the solution temperature in the measurement contains properties of the temperature dependence of the solvent vapor pressure, which characterizes each solvent. As a result, the dependence of the wavelength shift on the solution temperature discriminates between solutions of ethanol and acetone with different concentrations. This suggests a possibility for the simultaneous determination of the volatile substances and their concentrations.

Elastic Wave Characteristics of Incoloy 825 with Different Solution Treatment Temperature and Aging Time (용체화처리 온도 및 시효 시간이 다른 Incoloy 825의 탄성파 특성)

  • Lee, Seong-Gu;Choi, Byoung-Chul;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.261-269
    • /
    • 2021
  • This study was evaluated the elastic wave properties according to tension of Incoloy 825 alloy with different solution treatment temperature and aging time. Solution treatment was carried out at 700, 800, 900, and 1000 ℃ for 1 hour, and aging was carried out at 700 ℃ for 1, 5, 10, and 30 hours. As the solution treatment temperature increased, the tensile strength decreased and the elongation increased. However, as the aging time increased, the tensile strength increased and the elongation decreased. The dominant frequency decreased as the solution treatment temperature increased, but increased as the aging time increased. The dominant frequency according to the solution treatment and aging time increased as the tensile strength increased, but increased despite the decrease in elongation.

Effects of Soft Baking Temperature on the Properties of Solution Processed Zn-Sn-O Thin-Film Transistors (소프트 베이킹 온도가 용액기반 Zn-Sn-O 박막 트랜지스터의 전기적 특성에 미치는 영향)

  • Lee, Jae-Won;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.6-10
    • /
    • 2016
  • In this study, the effects of soft baking temperature on the solution derived ZTO (Zn-Sn-O) TFTs (thin-film transistors) as a In-free oxide semiconductor were investigated. In spite of the same hard baking at high temperature($600^{\circ}C$), the electrical properties of ZTO TFT was greatly changed by a small difference in soft baking temperature($180{\sim}250^{\circ}C$). The performance of TFT was deteriorated as the soft baking temperature increased. Therefore, it is important to remove the water-related defects well as organic impurities from the ZTO films during soft baking for fabrication of solution-derived high performance of TFTs.

The Estimation of Temperature distribution around Gas Storage Cavern (저온가스 저장공동 주위암반의 온도분포 예측에 관한 연구)

  • Lee, Yang;Lee, Seung-Do;Moon, Hyun-Koo
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.16-25
    • /
    • 2004
  • As underground caverns have many advantages such as safety and operation, they can also be used for gas storage purpose. When liquefied gas is stored underground, the cryogenic temperature of the gas affects the stability of the storage cavern. In order to store the liquefied gas successfully, it is essential to estimate the exact temperature distribution of the rock mass around the caverns. The main purpose of this study is the development of theoretical solution to be able to estimate the temperature distribution around storage caverns and the assessment of the solution. In this study, a theoretical solution and a conceptual model for estimating two and three dimensional temperature distribution around the storage caverns are suggested. Based on the multi-dimensional transient heat transfer theory, the theoretical solution is successfully derived by assuming the caverns shape as simplified geometry. In order to assess the theoretical solution, by performing numerical experiments with this multi-dimensional model, the temperature distribution of the theoretical solution is compared with that of numerical analysis. Furthermore, the effects of the caverns size are investigated.

Rheological Behavior of Poloxamer 407 Solution and Effect of Poly(ethylene glycol) on the Gelation

  • Lee, Ka-Young;Cho, Cheong-Weon;Lee, Yong-Bok;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • The rheological behavior of poloxamer 407 solution as function of concentration and temperature was evaluated by rotational viscometer. The viscosity of poloxamer 407 solution was increased as the concentration of poloxamer 407 and temperature increased. At $4^{\circ}C$, poloxamer 407 solution showed the Newtonian flow characteristics regardless of concentration. Upon increasing temperature the poloxamer solution changed to the pseudoplastic flow pattern. And at gelation temperature, rheological profiles showed the abrupt increase in viscosity. Gelation temperature was decreased as the concentration of poloxamer 407 increased, while it increased as the concentration of poly(ethylene glycol) 4000 increased. Poly(ethylene glycol) might be expected to reduce the driving force for hydrophobic interaction resulting in slow gelation. From the viscoelastic properties of poloxamer gel system, we obtained the storage and loss modulus depending on the shear stress and frequency. And the sol-gel transition temperature was also obtained from the viscoelastic properties of poloxamer 407 gel.

Analytical approaches to the charging process of stratified thermal storage tanks with variable inlet temperature (변온유입 성층축열조의 충전과정에 대한 해석적 접근)

  • Yoo, Hoseon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-54
    • /
    • 1997
  • This paper presents an approximate analytical solution to a two-region one-dimensional model for the charging process of stratified thermal storage tanks with variable inlet temperature in the presence of momentum-induced mixing. Based on the superposition principle, an arbitrary-varying inlet temperature is decomposed into inherent discontinuous steps and continuous intervals approximated as a finite number of piecewise linear functions. This approximation allows the temperature of the upper perfectly-mixed layer to be expressed in terms of constant, linear and exponential functions with respect to time. Applying the Laplace transform technique to the model equation for the lower thermocline layer subject to each of three representative interfacial conditions yields compact-form solutions, a linear combination of which constitutes the final temperature profile. A systematic method for deriving solutions to the plug-flow problem having polynomial-type boundary conditions is also established. The effect of adiabatic exit boundary on solution behaviors proves to be negligible under the actual working conditions, which justifies the assumption of semi-infinite domain introduced in the solution procedure. Finally, the approximate solution is validated by comparing it with an exact solution obtained for a specific variation of inlet temperature. Excellent agreements between them suffice to show the necessity and utility of this work.

  • PDF

Temperature Effects on the Compaction and Compressive Strength of Soils (온도변화가 흙의 다짐과 압축강도에 미치는 영향)

  • 김재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.4
    • /
    • pp.3137-3146
    • /
    • 1973
  • This study was to investigate the effects of compaction, compressive strength and Atterberg limits in accordance with the temperatures changes. It was conducted on four soils-KJ, JJ, MH, SS-at temperatures of -1, 1, 3, 5, 7, 10, 15, 19, $22^{\circ}C$. These tests were obtained the maximum dry density and the optimum moisture content of four soils in accordance with temperature changes by using distilled water and $CaCl_2$ 10% solution, and were put to the compressive strength tests on remolded specimens of soils compacted at the optimum moisture content. The result of the study can be summarized as follows; The maximum dry density increased with an increase in temperature, and the use of $CaCl_2$ 10% solution had higher maximum dry density than distilled water. The optimum moisture content decreased with an increase in temperature, and the use of $CaCl_2$ 10% solution had lower optimum moisture content than distilled water. The maximum compressive strength was shown high peak from $7^{\circ}C\;to\;15^{\circ}C$, and the use of $CaCl_2$ 10% solution had higher maximum compressive strength than distilled water. The liquid limit and plasticity index decreased with an increased in temperature. It is estimated that the use of $CaCl_2$ 10% solution can lower the minimum compacted temperature from $2^{\circ}C\;to\;4^{\circ}C$ in low temperature.

  • PDF

Temperature-Dependent Release of Drug from Copolymers of N-Isopropylacrylamide Containing Liposome (리포솜이 함유된 N-이소프로필아크릴아마이드의 공중합체로부터 온도에 따른 약물의 방출)

  • 박영심;한희동;홍성욱;김승수;신병철
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.59-66
    • /
    • 2004
  • Thermosensitive poly(N-isopropylacrylamide) gels containing temperature-sensitive liposomes showing temperature-dependent sol-gel transition were prepared. The surface of temperature-sensitive liposome was modified with copolymers of N-isopropylacrylamide and octadecylacrylate, which exhibited a lower critical solution temperature at around 30 $^{\circ}C$ After mixing the modified temperature-sensitive liposomes with poly(N-isopropylacrylamide) solution, the temperature-sensitive 1iposomes formed physically cross-linked gels through heating the solution above their lower critical solution temperatures. The release of drug from temperature-sensitive liposomes was determined by measuring fluorescence intensity. The drug release from temperature-sensitive liposomes in poly(N-isopropylacrylamide) gel gradually showed sustained-release with increasing temperature.

A Study on Heat and Mass Transfer in a Vertical Tube Absorber Using LiBr Family Solutions (LiBr계 용액을 사용한 수직관 흡수기의 열 및 물질 전달에 관한 연구)

  • Cho, H.C.;Kim, C.B.;Jeong, S.Y.;Kang, S.W.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.196-206
    • /
    • 1995
  • Experimental investigations on heat and mass transfer characteristics in a vertical tube absorber have been carried out. Three different copper tubes with a length of 1.5m have been tested using LiBr solution and LiBr-$CaCl_2$ solution. The effects of solution flow rate, cooling water temperature, solution inlet temperature and evaporation temperature have been investigated in detail. It is found that heat transfer coefficient increases gradually with the increase of solution flow rate, but decreases rapidly for the flow rates less than 0.02kg/ms. The grooved tube generally shows better heat transfer performances than the smooth tube. LiBr solution shows almost no absorption capability for the cooling water temperatures over $40^{\circ}C$. LiBr-$CaCl_2$ gives less decreasing rate in absorption capability at these temperatures and the heat transfer coefficient becomes less dependent on the types of tubes in use. Considering heat and mass transfer rates, LiBr-$CaCl_2$ solution is found to be more suitable than LiBr solution for air cooled absorber, which operates at higher temperature than water cooled absorber.

  • PDF

On-line Measurement of $H_2$O/LiBr Concentration using Electric Conductivity (전기 전도도를 이용한 $H_2$O/LiBr 용액의 실시간 농도의 측정)

  • 박찬우;김정환;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1078-1083
    • /
    • 2002
  • The objectives of this paper are to measure the concentration of $H_2$O/LiBr solution by measuring the electrical conductivity and to study the effect of the solution temperature and the concentration on the electrical conductivity of the solution. The solution temperature ranges $20^{\circ},\;40^{\circ},\;and\; 60^{\circ}$ for a fixed concentration during the experiment. The valid ranges of the concentration are two regions, low concentration region (1~20% of LiBr) and high concentration region (55~66% of LiBr). The results show that the conductivity of the solution increases linearly with increasing the solution temperature while it increases without creasing the concentration lower than about 35% of LiBr and decreases with increasing the concentration higher than 35%. This paper proposes experimental correlations for the concentration as functions of the solution temperature and the concentration with error band of $\pm7$% for the low concentration region and $\pm1$% for the high concentration region, respectively. The experimental correlation can be practically used in the on-line measurement without any sampling of solution from the closed system.