• Title/Summary/Keyword: Solid surface

Search Result 2,428, Processing Time 0.036 seconds

Crucible Cover of Multilayer Porous Hemisphere for Cd Distillation

  • Kwon, S.W.;Lee, Y.S.;Jung, J.H.;Kim, S.H.;Lee, S.J.;Hur, J.M.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.05a
    • /
    • pp.57-57
    • /
    • 2018
  • The electrorefining process is generally composed of two recovery steps in pyroprocessing - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The liquid cathode processing is necessary to separate cadmium from the actinide elements since the actinide deposits are dissolved or precipitated in a liquid cathode. Distillation process was employed for the cathode processing. It is very important to avoid a splattering of cadmium during evaporation due to the high vapor pressure. In this study, a multi-layer porous round cover was proposed and examined to develop a splatter shield for the Cd distillation crucible. Cadmium vapor can be released through the holes of the shield, whereas liquid drops can be collected in the multiple hemisphere. The collected drops flow on the round surface of the cover and flow down into the crucible. The crucible cover was fabricated and tested in the Cd distiller. The cover was made with three stainless steel round plates with a diameter of 33.50 mm. The distance between the hemispheres and the diameter of the holes are 10 and 1 mm, respectively. About 40 grams of Cd and about 4 grams of Bi was distilled at a reduced pressure for two hours at $470^{\circ}C$. After the Cd distillation experiment, cadmium was not detected and more than 90 % of Bi remained in the ICP-OES analysis. Therefore the crucible cover can be a candidate for the splatter shield of the Cd distillation crucible. Further development of the crucible cover is necessary for the decision of the optimum cover geometry and the operating conditions of the Cd distiller.

  • PDF

Effect of Cl2 on Electrodeposition Behavior in Electrowinning Process

  • Kim, Si Hyung;Kim, Taek-Jin;Kim, Gha-Young;Shim, Jun-Bo;Paek, Seungwoo;Lee, Sung-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.73-73
    • /
    • 2017
  • Pyroprocessing at KAERI (Korea Atomic Energy Research Institute) consists of pretreatment, electroreduction, electrorefining and electrowinning. SFR (Sodium Fast Reactor) fuel is prepared from the electrowinning process which is composed of LCC (Liquid Cadmium Process) and Cd distillation et al. LCC is an electrochemical process to obtain actinides from spent fuel. In order to recover actinides inert anodes such as carbon material are used, where chlorine gas ($Cl_2$) evolves on the surface of the carbon material. And, stainless steel (SUS) crucible should be installed in large-scale electrowinning system. Therefore, the effect of chlorine on the SUS material needs to be studied. LiCl-KCl-$UCl_3$-$NdCl_3$-$CeCl_3$-$LaCl_3$-$YCl_3$ salt was contained in 2 kinds of electrolytic crucible having an inner diameter of 5cm, made of an insulated alumina and an SUS, respectively. And, three kinds of electrodes such as cathode, anode, reference were used for the electrochemical experiments. Both solid tungsten (W) and LCC were used as cathodes. Cd of 45 g as the cathode material was contained in alumina crucibles for the deposition experiments, where the crucible has an inner diameter of 3 cm. Glassy carbon rod with the diameter of 0.3 cm was employed as an anode, where shroud was not used for the anode. A pyrex tube containing LiCl-KCl-1mol% AgCl and silver (Ag) wire having a diameter of 0.1cm was used as a reference electrode. Electrodeposition experiments were conducted at $500^{\circ}C$ at the current densities of $50{\sim}100mA/cm^2$. In conclusion, Fe ions were produced in the salt during the electrodeposition by the reaction of chlorine evolved from the anode and Fe of the SUS crucible and thereby LCC system using SUS crucible showed very low current efficiencies compared with the system using the insulated alumina crucible. Anode shroud needs to be installed around the glassy carbon not to influence surrounding SUS material.

  • PDF

High Temperature Grain Growth Behavior of Aerosol Deposited BaTiO3 Film on (100), (110) Oriented SrTiO3 Single Crystal (상온분사분말공정에 의해 SrTiO3 (100), (110) Seed에 코팅된 BaTiO3의 고온 성장 거동 분석)

  • Lim, Ji-Ho;Lee, Seung Hee;Kim, Ki Hyun;Ji, Sung-Yub;Jung, Suengwoon;Park, Chun-kil;Jung, Han-Bo;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.684-689
    • /
    • 2019
  • Single crystals, which have complexed composition, are fabricated by solid state grain growth. However, it is hard to achieve stable properties in a single crystal due to trapped pores. Aerosol deposition (AD) is suitable for fabrication of single crystals with stable properties because this process can make a high density coating layer. Because of their unique features (nano sized grains, stress inner site), it is hard to fabricate single crystals, and so studies of grain growth behavior of AD film are essential. In this study, a $BaTiO_3$ coating layer with ${\sim}9{\mu}m$ thickness is fabricated using an aerosol deposition method on (100) and (110) cut $SrTiO_3$ single crystal substrates, which are adopted as seeds for grain growth. Each specimen is heat-treated at various conditions (900, 1,100, and $1,300^{\circ}C$ for 5 h). $BaTiO_3$ layer shows different growth behavior and X-ray diffraction depending on cutting direction of $SrTiO_3$ seed. Rectangular pillars at $SrTiO_3$ (100) and laminating thin plates at $SrTiO_3$ (110), respectively, are observed.

Oxychlorination of methane over FeOx/CeO2 catalysts

  • Kim, Jeongeun;Ryou, Youngseok;Hwang, Gyohyun;Bang, Jungup;Jung, Jongwook;Bang, Yongju;Kim, Do Heui
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2185-2190
    • /
    • 2018
  • Methane activation through oxychlorination is in the spotlight due to the relatively mild reaction conditions at atmospheric pressure and in the temperature range of $450-550^{\circ}C$. Although $CeO_2$ is known to exhibit good activity for methane oxychlorination, significant amounts of by-products such as $CO_2$, CO and carbon deposits are produced during the reaction over $CeO_2$. We investigated the effect of iron in $FeO_x/CeO_2$ catalysts on methane oxychlorination. $FeO_x/CeO_2$ with 3 wt% iron shows the maximum yield at $510^{\circ}C$ with 23% conversion of methane and 65% selectivity of chloromethane. XRD and $H_2$ TPR results indicate that iron-cerium solid solution was formed, resulting in the production of more easily reduced cerium oxide and the suppression of catalysts sintering during the reaction. Furthermore, the selectivity of by-products decreased more significantly over $FeO_x/CeO_2$ than cerium oxide, which can be attributed to the facilitation of HCl oxidation arising from the enhanced reducibility of the former sample.

A Study on the Synthesis and Consolidation of Ti3Al by Electro-Discharge (전기방전에 의한 Ti3Al의 합성 및 소결 특성 연구)

  • Jang, Hyungsun;Cho, Yujung;Kang, Taeju;Kim, Kibeom;Lee, Wonhee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.488-493
    • /
    • 2009
  • Direct syntheses of bulk $Ti_3Al$ via electro-discharge-sintering (EDS) of a stoichiometric elemental powder mixture were investigated. A capacitor bank of $450{\mu}F$ was charged with three input energies, 0.5, 1.0, and 1.5 kJ. The charged capacitor bank was then instantaneously discharged through 0.3 g of a Ti-25.0 at.%Al powder mixture for consolidation. Complete phase transformation occurred in less than $200{\mu}sec$ by the discharge and a bulk $Ti_3Al$ compact was obtained. Compared with consolidated samples fabricated by conventional methods such as high vacuum sintering and casting, the electro-discharge-sintered $Ti_3Al$ compact shows a very fine microstructure with a hardness value of 425 Hv. Electro-discharge-sintering under a $N_2$ atmosphere successfully modified the surface Ti oxide of the $Ti_3Al$ compact into Ti nitride, which concurred with the synthesis and consolidation of $Ti_3Al$. Complete conversion yielding a single phase $Ti_3Al$ is primarily dominated by the fast solid state diffusion reaction.

Fuel Droplet Entrainment and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서 연료액적의 발생과 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.573-580
    • /
    • 2021
  • Paraffin wax is attracting many attentions for promising solid fuel of hybrid rocket because of its higher regression than other fuels. However, even with paraffin fuel combustion, unsteady low-frequency oscillation of combustion pressure is still observed. And, this is related to the formation of liquid layer and the entrainment of fuel droplets entering the axial combustion gas flow. This study investigates the effect of additional combustion of fuel droplets on the occurrence of low-frequency combustion instability. On the other hand, the formation of fuel droplets depends on Weber Number (the ratio of the inertial force to the surface tension of the liquid) and Reynolds Number of the oxidizer flow. Therefore, a laboratory-scale hybrid rocket was used to monitor the occurrence of combustion instability while changing We number. A series of combustion tests were conducted to control We number by changing the oxidizer flow rate or adding LDPE (low density polyethylene) to base fuel. In the results, it was confirmed that there is a critical We number above which the low-frequency combustion instability occurs.

Effect of Nanomesh Structure Variation on the Friction and Wear Characteristics of Carbon Nanotube Coatings (탄소나노튜브 코팅의 마찰/마모 특성에 대한 나노메쉬 구조의 영향)

  • Kim, Hae-Jin;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.315-319
    • /
    • 2020
  • In various fields, several studies based on carbon nanotubes (CNTs) have been conducted. The results of previous studies, wherein CNT coatings have been incorporated as solid lubricants, demonstrate that the friction and wear characteristics of CNT coatings can be improved through the absorption/dispersion of the contact pressure by controlling the stiffness of the nanomesh structure comprising CNT strands. In this study, the friction and wear characteristics of the following are compared: CNT coating formed by spin coating of CNT solution, compressed CNT coating, and compressed/heated CNT coating (wherein CNT strands are squeezed through compression and/or heating). It is observed that the friction coefficient of the CNT coating having the largest number of voids between the CNT strands is significantly lower than those of the compressed CNT coating and the compressed/heated CNT coating. The wear tracks of the compressed CNT coating and the compressed/heated CNT coating indicate that some parts become torn or adhere into a lump. However, in the case of the CNT coating, a smooth wear surface is formed by rubbing. Furthermore, as the void space between the squeezed and adhered CNT strands decreases, the resistance to structural deformation increases, thereby resulting in an increased frictional force and a wear pattern that becomes torn or forms a lump. Hence, the results obtained from this study corroborate that the friction and wear characteristics of CNT coatings can be enhanced through the absorption/dispersion of the contact pressure by controlling the stiffness of the nanomesh structure of CNT coatings.

Fabrication of Bulk PbTiO3 Ceramics with a High c/a Ratio by Ni Doping (Ni 도핑을 통한 정방성이 높은 벌크 PbTiO3 세라믹 합성)

  • Seon, Jeong-Woo;Cho, Jae-Hyeon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.407-411
    • /
    • 2022
  • Bulk-sized PbTiO3 (PT), which is widely known as a high-performance ferroelectric oxide but cannot be fabricated into a monolithic ceramic due to its high c/a ratio, was successfully prepared with a high tetragonality by partially substituting Ni ions for Pb ions using a solid-state reaction method. We found that Ni-doped PT was well-fabricated as a bulk monolith with a significant c/a ratio of ~1.06. X-ray diffraction on as-sintered and crushed samples revealed that NiTiO3 secondary phase was present at the doping level of more than 2 at.%. Scanning electron microscopic study showed that NiTiO3 secondary phase grew on the surface of PT specimens regardless of the doping level possibly due to the evaporation of Pb during sintering. We demonstrated that an unconventional introduction of Ni ions into A-site plays a key role on the fabrication of bulk PT, though how Ni ion functions should be studied further. We expect that this study contributes to a further development of displacive ferroelectric oxides with a high c/a ratio.

Study on Traveling Characteristics of Straight Automatic Steering Devices for Drivable Agricultural Machinery (승용형 농기계용 직진 자동조향장치 주행특성 연구)

  • Won, Jin-ho;Jeon, Jintack;Hong, Youngki;Yang, Changju;Kim, Kyoung-chul;Kwon, Kyung-do;Kim, Gookhwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2022
  • This paper introduces an automatic steering system for straight traveling capable of being mounted on drivable agricultural machinery which user can handle it such as a tractor, a transplant, etc. The modular automatic steering device proposed in the paper is composed of RTK GNSS, IMU, HMI, hydraulic valve, and wheel sensor. The path generation method of the automatic steering system is obtained from two location information(latitude and longitude on each point) measured by GNSS in advance. From HMI, a straight path(AB line) can be created by connecting latitude and longitude on each point and the device makes the machine able to follow the path. During traveling along the reference path, it acquires the real time position data every sample time(0.1s), compares the reference with them and calculates the lateral deviation. The values of deviation are used to control the steering angle of the machine using hydraulic valve mounted on the axle of front wheel. In this paper, Pure Pursuit algorithm is applied used in autonomous vehicles frequently. For the analysis of traveling characteristics, field tests were executed about these conditions: velocity of 2, 3, 4km/h which is applied to general agricultural work and ground surface of solid(asphalt) and weak condition(soil) such as farmland. In the case of weak ground state, two experiments were executed about no-load(without work) and load(with work such as plowing). The maximum average deviations were presented 2.44cm, 7.32cm, and 11.34cm during traveling on three ground conditions : asphalt, soil without load and with load(plowing).

Preparation and Electrochemical Characterization of Porous Carbon Foam from Waste Floral Foam for Supercapacitors (폐 플로랄 폼을 이용한 슈퍼커패시터용 다공성 탄소 폼 제조 및 전기화학 성능 평가)

  • Lee, Byoung-Min;Park, Jin-Ju;Park, Sang-Won;Yun, Je Moon;Choi, Jae-Hak
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.369-378
    • /
    • 2022
  • The recycling of solid waste materials to fabricate carbon-based electrode materials is of great interest for low-cost green supercapacitors. In this study, porous carbon foam (PCF) was prepared from waste floral foam (WFF) as an electrode material for supercapacitors. WFF was directly carbonized at various temperatures of 600, 800, and 1,000 ℃ under an inert atmosphere. The WFF-derived PCF (C-WFF) was found to have a specific surface area of 458.99 m2/g with multi-modal pore structures. The supercapacitive behavior of the prepared C-WFF was evaluated using a three-electrode system in a 6 M KOH aqueous electrolyte. As a result, the prepared C-WFF as an active material showed a high specific capacitance of 206 F/g at 1 A/g, a rate capability of 36.4 % at 20 A/g, a specific power density of 2,500 W/kg at an energy density of 2.68 Wh/kg, and a cycle stability of 99.96 % at 20 A/g after 10,000 cycles. These results indicate that the C-WFF prepared from WFF could be a promising candidate as an electrode material for high-performance green supercapacitors.