• 제목/요약/키워드: Solid state reduction

검색결과 150건 처리시간 0.024초

Lithium Aluminum Hydride Reduction Studies of Rigid $\alpha$-Oximino Ketones

  • Kim, Jack C.;Lee, Young-Tae;Kim, Min-Sook;Woo, Young-Min;Shin, Hong-Dae;Cho, In-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • 제3권3호
    • /
    • pp.119-122
    • /
    • 1982
  • Rigid ${\alpha}$-oximino ketones containing two functional groups such as 2-oximino-1-acenaphthenone and 2-oximino-1-indanone were synthesized and the simultaneous reduction of the two functional groups of ${\alpha}$-oximino ketones by $LiAlH_4$ gave the corresponding amino alcohols, 2-amino-1-acenaphthenol and 2-amino-1-indanol. The yields of the reduction products of the ${\alpha}$ -oximino ketones remarkably increased, as the increase of molar ratio of hydride used to the reactant. The use of 24 moles of $LiAlH_4$ was found to afford the best result in the reduction of the rigid ${\alpha}$-oximino ketones to the corresponding amino alcohols. The yields was not affected by the variation of solvents such as ether, THF and diglyme.

Green Synthesis of Platinum Nanoparticles by Electroreduction of a K2PtCl6 Solid-State Precursor and Its Electrocatalytic Effects on H2O2 Reduction

  • Kim, Kyung Tae;Jin, Sung-Ho;Chang, Seung-Cheol;Park, Deog-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3835-3839
    • /
    • 2013
  • A new synthesis route for Pt nanoparticles by direct electrochemical reduction of a solid-state Pt ion precursor ($K_2PtCl_6$) is demonstrated. Solid $K_2PtCl_6$-supported polyethyleneimine (PEI) coatings on the surface of glassy carbon electrode were prepared by simple mixing of solid $K_2PtCl_6$ into a 1.0% PEI solution. The potential cycling or a constant potential in a PBS (pH 7.4) medium were applied to reduce the solid $K_2PtCl_6$ precursor. The reduction of Pt(IV) began at around -0.2 V and the reduction potential was ca. -0.4 V. A steady state current was achieved after 10 potential cycling scans, indicating that continuous formation of Pt nanoparticles by electrochemical reduction occurred for up to 10 cycles. After applying the reduction potential of -0.6 V for 300 s, Pt nanoparticles with diameters ranging from $0.02-0.5{\mu}m$ were observed, with an even distribution over the entire glassy carbon electrode surface. Characteristics of the Pt nanoparticles, including their performance in electrochemical reduction of $H_2O_2$ are examined. A distinct reduction peak observed at about -0.20 V was due to the electrocatalytic reduction of $H_2O_2$ by Pt nanoparticles. From the calibration plot, the linear range for $H_2O_2$ detection was 0.1-2.0 mM and the detection limit for $H_2O_2$ was found to be 0.05 mM.

분말사출성형한 W-15 wt%Cu 나노복합분말의 고상소결에 미치는 잔류불순물의 영향 (Effect of Residual Impurities on Solid State Sintering of the Powder Injection Molded W-15 wt%Cu Nanocomposite Powder)

  • 윤의식;이재성;윤태식
    • 한국분말재료학회지
    • /
    • 제9권4호
    • /
    • pp.235-244
    • /
    • 2002
  • The effects of residual impurities on solid state sintering of the powder injection molded (PIMed) W-15wt%Cu nanocomposite powder were investigated. The W-Cu nanocomposite powder was produced by the mech-ano-chemical process consisting of high energy ball-milling and hydrogen reduction of W blue powder-cuO mixture. Solid state sintering of the powder compacts was conducted at $1050^{\circ}C$ for 2~10 h in hydrogen atmosphere. The den-sification of PIM specimen was slightly larger than that of PM(conventional PM specimen), being due to fast coalescence of aggregate in the PIM. The only difference between PIM and PM specimens was the amount of residual impurities. The carbon as a strong reduction agent effectively reduced residual W oxide in the PIM specimen. The $H_2O$ formed by $H_2$ reduction of oxide disintegrated W-Cu aggregates during removal process, on the contrary to this, micropore volume rapidly decreased due to coalescence of the disintegrated W-Cu aggregates during evolution of CO.It can be concluded that the higher densification was due to the earlier occurred Cu phase spreading that was induced by effective removal of residual oxides by carbon.

Preparation and Characterization of a Surface Renewable Solid State Hg/HgO Reference Electrode Utilizing Gold Amalgam

  • Kim, Won;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.439-442
    • /
    • 2007
  • A solid state Hg(Au)/HgO reference electrode was prepared utilizing gold amalgam solid particles. Solid fine powder of the gold amalgam was prepared by chemical reduction of Au(III) with NaBH4 followed by reduction of Hg(II) in the presence of gold fine particles. The solid content in the suspension of the gold amalgam particles and fine mercury oxide particles in DMF containing PVC was precipitated by the addition of a large amount of water to give solid Hg(Au)/HgO/PVC mixture. After drying, the mixture was pressure-molded to a physically stable Hg(Au)/HgO composite reference electrode material. The electrochemical characteristics of the electrode as a reference electrode were very similar to an ordinary Hg/HgO reference electrode. The electrode material can be molded and fabricated in any desired shape and size. The surface can be renewed by a simple polishing process whenever contaminated or deactivated. The applicability of the electrode in the electrochemical detection of carbohydrates after anion exchange separation was evaluated.

W-CuO 혼합물을 이용하여 제조된 W-Cu나노복합분말의 미세구조와 소결거동에 관한 연구 (Microstructure and Sintering Behavior of W-15 wt%Cu Nanocomposite Powder Prepared from W-CuO Mixture)

  • 김길수;김대건;김영도
    • 한국분말재료학회지
    • /
    • 제10권4호
    • /
    • pp.270-274
    • /
    • 2003
  • Recently, the fabrication process of W-Cu nanocomposite powders has been researched to improve the sinterability by mechanochemical process (MCP), which consists of ball milling and hydrogen-reduction with W- and Cu-oxide mixture. However, there are many control variables in this process because the W oxides are hydrogen-reduced via several reduction stages at high temperature over 80$0^{\circ}C$ with susceptive reduction conditions. In this experiment, the W-15 wt%Cu nanocomposite powder was fabricated with the ball-milling and hydrogen-reduction process using W and CuO powder. The microstructure of the fabricated W-Cu nanocomposite powder was homogeneously composed of the fine W particles embedded in the Cu matrix. In the sintering process, the solid state sintering was certainly observed around 85$0^{\circ}C$ at the heating rate of 1$0^{\circ}C$/min. It is considered that the solid state sintering at low temperature range should occur as a result of the sintering of Cu phase between aggregates. The specimen was fully densified over 98% for theoretical density at 120$0^{\circ}C$ for 1 h with the heating rate of 1$0^{\circ}C$/min.

마그네타이트와 금속(Ti, Al)의 기계적 합금화에 의한 복합분말의 합성 (Fabrication of Composite Powders by Mechanical Alloying of Magnetite-M (M = Ti, Al) Systems)

  • 홍대석;이성희;이충효;김지순;권영순
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.247-252
    • /
    • 2004
  • Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of Fe$_{3}$O$_{4}$-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which $Al_{2}$O$_{3}$ and TiO$_{2}$ are dispersed in $\alpha$-Fe matrix with nano-sized grains are obtained by mechanical alloying of Fe$_{3}$O$_{4}$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in Fe$_{3}$O$_{4}$-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAl$_{2}$O$_{4}$ or Fe$_{3}$Ti$_{3}$O$_{10}$. The average grain size of $\alpha$-Fe in Fe-TiO$_{2}$ composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.

후처리공정에 따른 고상반응 β-TCP/HAp 복합분체의 미세구조 변화 (Microstructure Evolution of Solid State Reacted HAp/β-TCP Composite Powders by Post-Treatment Processing)

  • 박영민;양태영;박상희;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제41권8호
    • /
    • pp.582-587
    • /
    • 2004
  • 수산화아파타이트(HAp) 및 P-인산3칼슘($\beta$-TCP)으로 구성되는 2상 인산칼슘염(BCP)을 고상반응법으로 합성하고, 이를 상압 및 autoclave를 이용한 고압에서 수열반응 시킴으로써 응집입자의 미세화를 시도하였다. 이 과정에서 일어나는 결정 상 및 화학조성, 구성상의 상대적인 양, 비표면적, 미세구조의 변화에 미치는 공정조건의 영향을 XRD, FT-IR, 질소흡착에 의한 BET법, SEM을 이용하여 검토하였다.

기계적 합금화법에 의한 헤마타이트의 고상환원 (Solid State Reduction of Haematite by Mechanical Alloying Process)

  • 이충효;홍대석;이만승;권영순
    • 한국분말재료학회지
    • /
    • 제9권1호
    • /
    • pp.25-31
    • /
    • 2002
  • The efects of mechanical aloying conditions and the type of reducing agent on the solid state reductionof haematite $Fe_2O_3$ have been investigated at room temperature. Aluminium titanium zinc and copper were used as reducing agent. Nanocomposites of metal-oxide in which oxide particles with nano size were dispersed in Fe matrix were obtained by mechanical alloying of $Fe_2O_3$ with aluminium and titanium respectively However the reduction of $Fe_2O_3$ by coppe was not occurred Composite materials of iron with $Al_2O_3$ and $TiO_2$ were obtained from the system of $Fe_2O_3-Al$ and $Fe_2O_3-Ti$ after ball milling for 20 hrs and 30 hrs respectively. And the system of $Fe_2O_3-Zn$ resulted in the formationof FeO with ZnO after ball milling of 120 hrs. The final grain sizes of iron estimated by X-ray diffraction line-width measurement were in the ranges of 24~33 nm.

Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization

  • Yang, Seung Kyu;Kim, Daegi;Han, Seong Kuk;Kim, Ho;Park, Seyong
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.456-461
    • /
    • 2018
  • The solid-state anaerobic digestion (SS-AD) has promoted the development and application for biogas production from biomass which operate a high solid content feedstock, as higher than 15% of total solids. However, the digested byproduct of SS-AD can be used as a fertilizer or as solid fuel, but it has serious problems: high moisture content and poor dewaterability. The organic residue from SS-AD has to be improved to address these problems and to make it a useful alternative energy source. Hydrothermal carbonization was investigated for conversion of the organic residue from the SS-AD of livestock waste to solid fuels. The effects of hydrothermal carbonization were evaluated by varying the reaction temperatures within the range of $180-240^{\circ}C$. Hydrothermal carbonization increased the calorific value through the reduction of the hydrogen and oxygen contents of the solid fuel, in addition to its drying performance. Therefore, after the hydrothermal carbonization, the H/C and O/C atomic ratios decreased through the chemical conversion. Thermogravimatric analysis provided the changed combustion characteristics due to the improvement of the fuel properties. As a result, the hydrothermal carbonization process can be said to be an advantageous technology in terms of improving the properties of organic waste as a solid-recovered fuel product.

볼밀링에 의한 철산화물-철계의 고상 환원반응 및 자기특성 (Solid State Reduction and Magnetic Properties of Iron Oxide-Iron System Induced by Ball Milling Process)

  • 이충효
    • 한국재료학회지
    • /
    • 제34권6호
    • /
    • pp.309-314
    • /
    • 2024
  • The structure and magnetic properties of composite powders prepared by ball milling a mixture of Fe2O3·(0.4-1.0)Fe were investigated. Hysteresis loops and differential scanning calorimetry (DSC) curves are used to characterize the materials and to examine the effect of the solid state reaction induced by ball milling. The results showed that a solid state reaction in Fe2O3·(0.4-1.0)Fe clearly proceeds after only 1 h of ball milling. The system is characterized by a positive reaction heat of +2.23 kcal/mole. The diffraction lines related to Fe2O3 and Fe disappeared after 1 h of ball milling and, instead, diffraction lines of the intermediate phase of Fe3O4 plus FeO formed. The magnetization and coercivity of the Fe2O3·0.8Fe powders were changed by the solid state reaction process of Fe2O3 by Fe during ball milling. The coercivity of the Fe2O3·0.8Fe powders increased with increasing milling time and reached a maximum value of 340 Oe after 5 h of ball milling. This indicates the grain size of Fe3O4 was clearly reduced during ball milling. The magnetic properties of the annealed powders depend on the amount of magnetic Fe and Fe3O4 phases.