Browse > Article
http://dx.doi.org/10.4150/KPMI.2002.9.4.235

Effect of Residual Impurities on Solid State Sintering of the Powder Injection Molded W-15 wt%Cu Nanocomposite Powder  

윤의식 (한양대학교 금속재료공학과)
이재성 (한양대학교 금속재료공학과)
윤태식 (베스너 주식회사)
Publication Information
Journal of Powder Materials / v.9, no.4, 2002 , pp. 235-244 More about this Journal
Abstract
The effects of residual impurities on solid state sintering of the powder injection molded (PIMed) W-15wt%Cu nanocomposite powder were investigated. The W-Cu nanocomposite powder was produced by the mech-ano-chemical process consisting of high energy ball-milling and hydrogen reduction of W blue powder-cuO mixture. Solid state sintering of the powder compacts was conducted at $1050^{\circ}C$ for 2~10 h in hydrogen atmosphere. The den-sification of PIM specimen was slightly larger than that of PM(conventional PM specimen), being due to fast coalescence of aggregate in the PIM. The only difference between PIM and PM specimens was the amount of residual impurities. The carbon as a strong reduction agent effectively reduced residual W oxide in the PIM specimen. The $H_2O$ formed by $H_2$ reduction of oxide disintegrated W-Cu aggregates during removal process, on the contrary to this, micropore volume rapidly decreased due to coalescence of the disintegrated W-Cu aggregates during evolution of CO.It can be concluded that the higher densification was due to the earlier occurred Cu phase spreading that was induced by effective removal of residual oxides by carbon.
Keywords
Nanocomposite W-Cu; Powder injection molding; Solid state sintering; Residual impurity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Upadhyaya and R. M. German: Int. J. Powder Metall. 34 (1998) 43.
2 T. H. Kim, J. H. Yu and J. S. Lee: Nanostr. Matr., 9 (1997) 213.   DOI   ScienceOn
3 T. W. Kirk, S. G. Caldwell and J. J. Oakes: Advances in Powder Metallurgy & Particulate Materials, MPIF, Princeton, NJ, 9(1992) 115.
4 I. H. Moon and J. S. Lee:Powder Metallurgy, 22 (1979) 5.   DOI   ScienceOn
5 Y Sakka: J. Mater. Sci. Lett. 10 (1991) 426.   DOI
6 J. S. Lee, W. A. Kaysser and G. Petzow: Modern Developments in Powder Metallurgy, Eds. E. N. Aqua and C.I. Whitman, MPIF and APMI, 15 (1985) 489.
7 D. S. Venables and M. E. Brown: Thermochimica Acta, 285 (1996) 361.   DOI   ScienceOn
8 E. S. Yoon, J. S. Lee, S. T. Oh, and B. K. Kim: Intern. J. Refractory Metals & Hard Mater., 2002 in press.
9 J. S. Lee, T. H. Kim and T. G. Kang: Proc. 1993 Powder Metall. World Congress, Kyoto, Japan, (1993) 365.
10 윤의식, 유지훈, 이재성: 분말야금학회지, 5(1998) 258.   과학기술학회마을
11 이재성: 국내특허 97-1558, 1997, 2. 11.
12 L. Jiqiao, Ch. Shaioyi, Z. Zhiqiang, L. Haibo, and H. Baiyan: Intern. J. Refractory Metal & Hard Mater., 17 (1999) 423.   DOI   ScienceOn
13 J. S. Lee and T. H. Kim: Nanostr. Matr., 6(1995) 691.   DOI   ScienceOn
14 J. S. Lee and T. H. Kim: Solid State Phenomena, 25&26 (1992) 143.   DOI
15 C. Zweben: Journal of Metals, 7 (1992) 15.
16 C. Williams: Ceramic Bulletin, 50 (1991) 714.
17 I. H. Moon, M. K. Kang, J. S. Lee, J. K. Lee, and J. S. Kang: Proc. of 1994 Powder Metallurgy World Congress, Paris, France 3 (1994) 1807.
18 R. M. German, K. F. Hens and J. L. Johnson: Intern. J. Powder Metallurgy, 30 (1994) 205.
19 윤의식, 유지훈, 이재성: 분말야금학회지, 4(1997) 304.   과학기술학회마을
20 I. H. Moon and J. S. Lee: Powder Metallurgy International, 9 (1977) 23.
21 J. L. Johnson and R. M. German: Advances in Powder Metallurgy & Particulate Materials, MPIF, Princeton, NJ, 4 (1993) 201.
22 E. P. Barrett, L. G. Joyner and P. P. Halenda: J. Amer. Chem. Soc., 73 (1951) 73.   DOI
23 R. Miura, J. Sekikawa, M. Uchida, Y. Owaki, and J. Madarame: J. Japanese Soc. of Powder and Powder Metallurgy, 38 (1991) 801.