Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.12.3835

Green Synthesis of Platinum Nanoparticles by Electroreduction of a K2PtCl6 Solid-State Precursor and Its Electrocatalytic Effects on H2O2 Reduction  

Kim, Kyung Tae (Institute of Bio.Physio Sensor Technology, Pusan National University)
Jin, Sung-Ho (Department of Chemistry Education, Graduate Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University)
Chang, Seung-Cheol (Institute of Bio.Physio Sensor Technology, Pusan National University)
Park, Deog-Su (Institute of Bio.Physio Sensor Technology, Pusan National University)
Publication Information
Abstract
A new synthesis route for Pt nanoparticles by direct electrochemical reduction of a solid-state Pt ion precursor ($K_2PtCl_6$) is demonstrated. Solid $K_2PtCl_6$-supported polyethyleneimine (PEI) coatings on the surface of glassy carbon electrode were prepared by simple mixing of solid $K_2PtCl_6$ into a 1.0% PEI solution. The potential cycling or a constant potential in a PBS (pH 7.4) medium were applied to reduce the solid $K_2PtCl_6$ precursor. The reduction of Pt(IV) began at around -0.2 V and the reduction potential was ca. -0.4 V. A steady state current was achieved after 10 potential cycling scans, indicating that continuous formation of Pt nanoparticles by electrochemical reduction occurred for up to 10 cycles. After applying the reduction potential of -0.6 V for 300 s, Pt nanoparticles with diameters ranging from $0.02-0.5{\mu}m$ were observed, with an even distribution over the entire glassy carbon electrode surface. Characteristics of the Pt nanoparticles, including their performance in electrochemical reduction of $H_2O_2$ are examined. A distinct reduction peak observed at about -0.20 V was due to the electrocatalytic reduction of $H_2O_2$ by Pt nanoparticles. From the calibration plot, the linear range for $H_2O_2$ detection was 0.1-2.0 mM and the detection limit for $H_2O_2$ was found to be 0.05 mM.
Keywords
Platinum nanoparticles; Pt precursors; Electrodeposition; Hydrogen peroxide; Electrocatalysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chen, A.; Hindle, P. H. Chem. Rev. 2010, 110, 3767.   DOI   ScienceOn
2 Rao, C. R. K.; Trivedi, D. C. Coord. Chem. Rev. 2005, 249, 613.   DOI   ScienceOn
3 Sen, F.; Sen, S.; Gokasc, G. Phys. Chem. Chem. Phys. 2011, 13, 1676.   DOI   ScienceOn
4 Wang, H. H.; Zhou, Z. Y.; Yuan, Q.; Tian, N.; Sun, S. G. Chem. Commun. 2011, 47, 3407.   DOI   ScienceOn
5 Bonnemann, H.; Waldofner, N.; Haubold, H.-G.; Vad, T. Chem. Mater. 2002, 14, 1115.   DOI   ScienceOn
6 Marie, J.; Berthon-Fabry, S.; Chatenet, M.; Chainet, E.; Pirard, R.; Cornet, N.; Achard, P. J. Appl. Electrochem. 2007, 37, 147.
7 Chen, J.; Herricks, T.; Geissler, M.; Xia, Y. J. Am. Chem. Soc. 2004, 126, 10854.   DOI   ScienceOn
8 Qi, Z.; Pickup, P. G. Chem. Commun. 1998, 15.
9 Tiwari, J. N.; Pan, F.-M.; Tiwari, R. N.; Nandi, S. K. Chem. Commun. 2008, 6516.
10 Cui, H. F.; Ye, J.; Zhang, W. D.; Wang, F.; Sheu, F. S. J. Electroanal. Chem. 2005, 577, 295.   DOI   ScienceOn
11 Chen, X.; Li, N.; Eckhard, K.; Stoica, L.; Xia, W.; Assmann, J.; Muhler, M.; Schuhmann, W. Electrochem. Commun. 2007, 9, 1348.   DOI   ScienceOn
12 Yu, P.; Qian, Q.; Wang, X.; Cheng, H.; Ohsaka, T.; Mao, L. J. Mater. Chem. 2010, 20, 5820.   DOI   ScienceOn
13 Park, D. S.; Won, M. S.; Goyal, R. N.; Shim, Y. B. Sensor. Actuat. B-Chem. 2012, 174, 45.   DOI   ScienceOn
14 Yin, B.; Ma, H.; Wang, S.; Chen, S. J. Phys. Chem. B 2003, 107, 8898.   DOI   ScienceOn
15 Kost, K. M.; Bartak, D. E.; Kazee, B.; Kuwana, T. Anal. Chem. 1990, 62, 151.   DOI
16 Song, J. S.; Kang, C. Bull. Korean Chem. Soc. 2007, 28, 1683.   DOI   ScienceOn
17 Song, Y. J.; Oh, J. K.; Park, K. W. Nanotechnology 2008, 19, 355602.   DOI   ScienceOn
18 Park, D. K.; Lee, S. J.; Lee, J. H.; Choi, M. Y.; Han, S. W. Chem. Phys. Lett. 2010, 484, 254.   DOI   ScienceOn
19 Kuo, P. L.; Chen, W. F.; Huang, H. Y.; Chang, I. C.; Dai, S. A. J. Phys. Chem. B 2006, 110, 3071.
20 Speight, J. G. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill: Boca Raton, New York, U.S.A., 2005; p 1.338.
21 Ye, J. S.; Ottova, A.; Tien, H. T.; Sheu, F. S. Bioelectrochemistry 2003, 59, 65.   DOI   ScienceOn
22 Lu, G.; Zangari, G. J. Phys. Chem. B 2005, 109, 7998.   DOI   ScienceOn
23 Stoychev, D.; Papoutsis, A.; Kelaidopoulou, A.; Kokkinidis, G.; Milchev, A. Mater. Chem. Phys. 2001, 72, 360.   DOI   ScienceOn
24 Wang, Z.; Shoji, M.; Ogata, H. Appl. Surf. Sci. 2012, 259, 219.   DOI   ScienceOn
25 Hudak, E. M.; Mortimer, J. T.; Martin, H. B. J. Neural Eng. 2010, 7, 026005.   DOI   ScienceOn
26 Zhu, X.; Ding, A. Int. J. Electrochem. Sci. 2013, 8, 135.
27 Mitchenko, S. A.; Khomutov, E. V.; Shubin, A. A.; Shul'ga, Yu. M. Theor. Exp. Chem. 2003, 39, 255.   DOI   ScienceOn
28 Santiago, D.; Calero, G. G. R.; Palkar, A.; Jimenez, D. B.; Galvan, D. H.; Casillas, G.; Mayoral, A.; Yacamain, M. J.; Echegoyen, L.; Cabrera, C. R. Langmuir 2012, 28, 17202.   DOI   ScienceOn
29 Santiago, D.; Rodriguez-Calero, G. G.; Rivera, H.; Tryk, D. A.; Scibioh, M. A.; Cabrera, C. R. J. Electrochem. Soc. 2010, 157, F189.   DOI   ScienceOn
30 Karam, P.; Halaoui, L. I. Anal. Chem. 2008, 80, 5441.   DOI   ScienceOn
31 You, J. M.; Kim, D.; Jeon, S. Electrochim. Acta 2012, 65, 288.   DOI   ScienceOn