DOI QR코드

DOI QR Code

Effect of Residual Impurities on Solid State Sintering of the Powder Injection Molded W-15 wt%Cu Nanocomposite Powder

분말사출성형한 W-15 wt%Cu 나노복합분말의 고상소결에 미치는 잔류불순물의 영향

  • 윤의식 (한양대학교 금속재료공학과) ;
  • 이재성 (한양대학교 금속재료공학과) ;
  • 윤태식 (베스너 주식회사)
  • Published : 2002.08.01

Abstract

The effects of residual impurities on solid state sintering of the powder injection molded (PIMed) W-15wt%Cu nanocomposite powder were investigated. The W-Cu nanocomposite powder was produced by the mech-ano-chemical process consisting of high energy ball-milling and hydrogen reduction of W blue powder-cuO mixture. Solid state sintering of the powder compacts was conducted at $1050^{\circ}C$ for 2~10 h in hydrogen atmosphere. The den-sification of PIM specimen was slightly larger than that of PM(conventional PM specimen), being due to fast coalescence of aggregate in the PIM. The only difference between PIM and PM specimens was the amount of residual impurities. The carbon as a strong reduction agent effectively reduced residual W oxide in the PIM specimen. The $H_2O$ formed by $H_2$ reduction of oxide disintegrated W-Cu aggregates during removal process, on the contrary to this, micropore volume rapidly decreased due to coalescence of the disintegrated W-Cu aggregates during evolution of CO.It can be concluded that the higher densification was due to the earlier occurred Cu phase spreading that was induced by effective removal of residual oxides by carbon.

Keywords

References

  1. C. Williams: Ceramic Bulletin, 50 (1991) 714.
  2. C. Zweben: Journal of Metals, 7 (1992) 15.
  3. R. M. German, K. F. Hens and J. L. Johnson: Intern. J. Powder Metallurgy, 30 (1994) 205.
  4. R. Miura, J. Sekikawa, M. Uchida, Y. Owaki, and J. Madarame: J. Japanese Soc. of Powder and Powder Metallurgy, 38 (1991) 801.
  5. I. H. Moon and J. S. Lee:Powder Metallurgy, 22 (1979) 5. https://doi.org/10.1179/pom.1979.22.1.5
  6. I. H. Moon and J. S. Lee: Powder Metallurgy International, 9 (1977) 23.
  7. J. L. Johnson and R. M. German: Advances in Powder Metallurgy & Particulate Materials, MPIF, Princeton, NJ, 4 (1993) 201.
  8. T. W. Kirk, S. G. Caldwell and J. J. Oakes: Advances in Powder Metallurgy & Particulate Materials, MPIF, Princeton, NJ, 9(1992) 115.
  9. J. S. Lee, T. H. Kim and T. G. Kang: Proc. 1993 Powder Metall. World Congress, Kyoto, Japan, (1993) 365.
  10. 이재성: 국내특허 97-1558, 1997, 2. 11.
  11. J. S. Lee and T. H. Kim: Nanostr. Matr., 6(1995) 691. https://doi.org/10.1016/0965-9773(95)00152-2
  12. I. H. Moon, M. K. Kang, J. S. Lee, J. K. Lee, and J. S. Kang: Proc. of 1994 Powder Metallurgy World Congress, Paris, France 3 (1994) 1807.
  13. E. S. Yoon, J. S. Lee, S. T. Oh, and B. K. Kim: Intern. J. Refractory Metals & Hard Mater., 2002 in press.
  14. 윤의식, 유지훈, 이재성: 분말야금학회지, 5(1998) 258.
  15. J. S. Lee and T. H. Kim: Solid State Phenomena, 25&26 (1992) 143. https://doi.org/10.4028/www.scientific.net/SSP.25-26.143
  16. 윤의식, 유지훈, 이재성: 분말야금학회지, 4(1997) 304.
  17. J. S. Lee, W. A. Kaysser and G. Petzow: Modern Developments in Powder Metallurgy, Eds. E. N. Aqua and C.I. Whitman, MPIF and APMI, 15 (1985) 489.
  18. T. H. Kim, J. H. Yu and J. S. Lee: Nanostr. Matr., 9 (1997) 213. https://doi.org/10.1016/S0965-9773(97)00056-1
  19. D. S. Venables and M. E. Brown: Thermochimica Acta, 285 (1996) 361. https://doi.org/10.1016/0040-6031(96)02951-6
  20. L. Jiqiao, Ch. Shaioyi, Z. Zhiqiang, L. Haibo, and H. Baiyan: Intern. J. Refractory Metal & Hard Mater., 17 (1999) 423. https://doi.org/10.1016/S0263-4368(99)00033-5
  21. E. P. Barrett, L. G. Joyner and P. P. Halenda: J. Amer. Chem. Soc., 73 (1951) 73. https://doi.org/10.1021/ja01145a126
  22. Y Sakka: J. Mater. Sci. Lett. 10 (1991) 426. https://doi.org/10.1007/BF00728054
  23. A. Upadhyaya and R. M. German: Int. J. Powder Metall. 34 (1998) 43.