• Title/Summary/Keyword: Solid solution theory

Search Result 82, Processing Time 0.019 seconds

A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • The current article studied wave propagation in a nonlocal porous thermoelastic half-space with temperature-dependent properties. The problem is solved in the context of the Green-Lindsay theory (G-L) and the Lord- Shulman theory (L-S) based on thermoelasticity with memory-dependent derivatives. The governing equations of the porous thermoelastic solid are solved using normal mode analysis with an eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out, and the effect of local parameter and temperature-dependent properties on the physical fields are presented graphically.

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri;Abbas Loghman;Mohammad Arefi
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.115-126
    • /
    • 2023
  • This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

A study on the estimation of temperature distribution around gas storage cavern

  • Lee Yang;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.238-243
    • /
    • 2003
  • As there are many advantages on underground caverns, such as safety and operation, they can also be used for gas storage purpose. When liquefied gas is stored underground, the cryogenic temperature of the gas will affect the stability of the storage cavern. In order to store the liquefied gas successfully, it is essential to estimate the exact temperature distribution of the rock mass around the cavern. In this study, an analytic solution and a conceptual model that can estimate three-dimensional temperature distribution around the storage cavern are suggested. When calculating the heat transfer within a solid, it is likely to consider the solid as the intersection of two or more infinite or semi-infinite geometries. Therefore heat transfer solution for the solid is expressed by the product of the dimensionless temperatures of the geometries, which are used to form the combined solid. Based on the multi-dimensional transient heat transfer theory, the analytic solution is successfully derived by assuming the cavern shape to be of simplified geometry. Also, a conceptual model is developed by using the analytic solution of this study. By performing numerical experiments of this multi-dimensional model, the temperature distribution of the analytic solution is compared with that of numerical analysis and theoretical solutions.

  • PDF

Measurement Theory Development of Suspended Solid Concentration Using Glass Fiber Membrane Module (유리섬유 분리막 모듈을 이용한 부유물질 농도의 측정 원리 개발)

  • Park, Jin-Yong;Jung, Wan
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.268-276
    • /
    • 2009
  • In this study the basic data were settled down to establish theory of membrane module and apparatus for measuring suspended solid per particle size. The theory and technique were different with the conventional weight method and light scattering method. For this purpose silica, dextran, kaolin, and PEG (polyethylene glycol) suspended solutions were filtrated through glass fiber membranes GF/C and GF/A on membrane module for measuring TMP (Trans-membrane pressure) changes using digital pressure gages. And the related equation between modified solution concentration and TMP change slope was derived from the TMP change experiments, and then suspended solid concentration of samples could be expected by the equation.

Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory

  • Navi, B. Rousta;Mohammadimehr, M.;Arani, A. Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.753-767
    • /
    • 2019
  • Vibration control in mechanical equipments is an important problem where unwanted vibrations are vanish or at least diminished. In this paper, free vibration active control of the porous sandwich piezoelectric polymeric nanocomposite microbeam with microsensor and microactuater layers are investigated. The aim of this research is to reduce amplitude of vibration in micro beam based on linear quadratic regulator (LQR). Modified couple stress theory (MCST) according to sinusoidal shear deformation theory is presented. The porous sandwich microbeam is rested on elastic foundation. The core and face sheet are made of porous and three-phase carbon nanotubes/resin/fiber nanocomposite materials. The equations of motion are extracted by Hamilton's principle and then Navier's type solution are employed for solving them. The governing equations of motion are written in space state form and linear quadratic regulator (LQR) is used for active control approach. The various parameters are conducted to investigate on the frequency response function (FRF) of the sandwich microbeam for vibration active control. The results indicate that the higher length scale to the thickness, the face sheet thickness to total thickness and the considering microsensor and microactutor significantly affect LQR and uncontrolled FRF. Also, the porosity coefficient increasing, Skempton coefficient and Winkler spring constant shift the frequency response to higher frequencies. The obtained results can be useful for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Nonlocal bending characteristics of nanoplate reinforced by functionally graded GPLs exposed to thermo-mechanical loads resting on the Pasternak's foundation

  • Masoud Kiani;Mohammad Arefi
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.97-114
    • /
    • 2023
  • The nonlocal strain gradient theory for the static bending analysis of graphene nanoplatelets (GPLs) reinforced the nanoplate is developed in this paper. The nanoplatelet is exposed to thermo-mechanical loads and is also supposed to stand on an elastic foundation. For computing impressive composite material characteristics, the Halpin-Tsai model is selected for various sectors. The various distributions are propounded including UD, FG-O, and FG-X. The represented equations are acquired based on the virtual work and sinusoidal shear and normal deformation theory (SSNDT). Navier's solution as the analytical method is applied to solve these equations. Furthermore, the effects of GPL weight fraction, temperature parameters, distribution pattern and parameters of the foundation are presented and discussed.

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.

Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.105-120
    • /
    • 2018
  • In this paper, the nonlinear free and forced vibration responses of sandwich nano-beams with three various functionally graded (FG) patterns of reinforced carbon nanotubes (CNTs) face-sheets are investigated. The sandwich nano-beam is resting on nonlinear Visco-elastic foundation and is subjected to thermal and electrical loads. The nonlinear governing equations of motion are derived for an Euler-Bernoulli beam based on Hamilton principle and von Karman nonlinear relation. To analyze nonlinear vibration, Galerkin's decomposition technique is employed to convert the governing partial differential equation (PDE) to a nonlinear ordinary differential equation (ODE). Furthermore, the Multiple Times Scale (MTS) method is employed to find approximate solution for the nonlinear time, frequency and forced responses of the sandwich nano-beam. Comparison between results of this paper and previous published paper shows that our numerical results are in good agreement with literature. In addition, the nonlinear frequency, force response and nonlinear damping time response is carefully studied. The influences of important parameters such as nonlocal parameter, volume fraction of the CNTs, different patterns of CNTs, length scale parameter, Visco-Pasternak foundation parameter, applied voltage, longitudinal magnetic field and temperature change are investigated on the various responses. One can conclude that frequency of FG-AV pattern is greater than other used patterns.

The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method

  • Mohsen Emdadi;Mehdi Mohammadimehr;Borhan Rousta Navi
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.439-454
    • /
    • 2023
  • In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.