Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.6.753

Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory  

Navi, B. Rousta (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Mohammadimehr, M. (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Arani, A. Ghorbanpour (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Steel and Composite Structures / v.32, no.6, 2019 , pp. 753-767 More about this Journal
Abstract
Vibration control in mechanical equipments is an important problem where unwanted vibrations are vanish or at least diminished. In this paper, free vibration active control of the porous sandwich piezoelectric polymeric nanocomposite microbeam with microsensor and microactuater layers are investigated. The aim of this research is to reduce amplitude of vibration in micro beam based on linear quadratic regulator (LQR). Modified couple stress theory (MCST) according to sinusoidal shear deformation theory is presented. The porous sandwich microbeam is rested on elastic foundation. The core and face sheet are made of porous and three-phase carbon nanotubes/resin/fiber nanocomposite materials. The equations of motion are extracted by Hamilton's principle and then Navier's type solution are employed for solving them. The governing equations of motion are written in space state form and linear quadratic regulator (LQR) is used for active control approach. The various parameters are conducted to investigate on the frequency response function (FRF) of the sandwich microbeam for vibration active control. The results indicate that the higher length scale to the thickness, the face sheet thickness to total thickness and the considering microsensor and microactutor significantly affect LQR and uncontrolled FRF. Also, the porosity coefficient increasing, Skempton coefficient and Winkler spring constant shift the frequency response to higher frequencies. The obtained results can be useful for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.
Keywords
active control; porous and polymeric materials; piezoelectric sandwich microbeam; free vibration; sinusoidal shear deformation theory; surface stress effects;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018a) "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405
2 Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018b), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., Int. J., 26(4), 513-531. https://doi.org/10.12989/scs.2018.26.4.513
3 Moita, S.J., Araujo, L.A., Correia, V.F., Mota, C.M. and Herskovits, S.J. (2018), "Active-passive damping in functionally graded sandwich plate/shell structures", Compos. Struct., 202, 324-332. https://doi.org/10.1016/j.compstruct.2018.01.089   DOI
4 Nath, J.K. and Kapuria, S. (2012), "Assessment of improved zigzag and smeared theories for smart cross-ply composite cylindrical shells including transverse normal extensibility under thermoelectric loading", Arch. Appl. Mech., 82(7), 859-877. https://doi.org/10.1007/s00419-011-0597-x   DOI
5 Nguyen-Quang, K., Vo-Duy, T., Dang-Trung, H. and Nguyen-Thoi, T. (2018), "An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers", Comput. Methods Appl. Mech. Eng., 332(15), 25-46. https://doi.org/10.1016/j.cma.2017.12.010   DOI
6 Beheshti-Aval, S. and Lezgy-Nazargah, M. (2012), "A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams", Arch. Appl. Mech., 82(12), 1709-1752. https://doi.org/10.1007/s00419-012-0621-9   DOI
7 Beheshti-Aval, S. and Lezgy-Nazargah, M. (2013), "Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams", Meccanica, 48(6), 1479-1500. https://doi.org/10.1007/s11012-012-9679-2   DOI
8 Bitaraf, M., Ozbulut, O.E., Hurlebaus, S. and Barroso, L. (2010), "Application of semi active control strategies for seismic protection of buildings with MR dampers", Eng. Struct., 32(10), 3040-3047. https://doi.org/10.1016/j.engstruct.2010.05.023   DOI
9 Belyaev, A.K., Fedotov, A.V., Irschik, H., Nader, M., Polyanskiy, V.A. and Smirnova, N.A. (2017), "Experimental study of local and modal approaches to active vibration control of elastic systems", Struct. Control Health Monitor., 25(2), 10-30. https://doi.org/10.1002/stc.2105
10 Bhardwaj, G., Upadhyay, A.K. and Pandey, R. (2013), "Non-linear flexural and dynamic response of CNT reinforced laminated composite plates", Compos. Part B., 45, 89-100. https://doi.org/10.1016/j.compositesb.2012.09.004   DOI
11 Botta, F. and Toccaceli, F. (2018), "Piezoelectric plate's distribution for active control of torsional vibrations", Actuators, 7(2), 23-40. https://doi.org/10.3390/act7020023   DOI
12 Chhabra, D., Narwal, K. and Singh, P. (2012), "Design and analysis of piezoelectric smart beam for active vibration control", Int. J. Adv. Res. Technol., 1(1), 1-5.
13 Choi, I., Kim, J.G., Seo, I.S. and Lee, D.G. (2012), "Radar absorbing sandwich construction composed of CNT, PMI foam and carbon/epoxy composite", Compos. Struct., 94(9), 3002-3008. https://doi.org/10.1016/j.compstruct.2012.04.009   DOI
14 Yang, L., Fan, H., Liu, J., Ma, Y. and Zheng, Q. (2013), "Hybrid lattice-core sandwich composites designed for microwave absorption", Mater. Des., 50, 863-871. https://doi.org/10.1016/j.matdes.2013.03.032   DOI
15 Yang, L., Liu, S., Zhang, H., Wu, H., Li, H. and Jiang, J. (2018a), "Hybrid Filtered-x adaptive vibration control with internal feedback and online identification", Shock and Vib., 9010567. https://doi.org/10.1155/2018/9010567
16 Park, S. and Yossifon, G. (2018), "Electro-thermal based active control of ion transport in a microfluidic device with an ion-perm selective membrane", Nanoscale, 10, 11633-11641. https://doi.org/10.1039/C8NR02389A   DOI
17 Khana, S., Saib, Y. and Prabu, M. (2018), "Active control of smart shape memory alloy composite flapper for aerodynamic applications", Procedia Compos. Sci., 133, 134-140. ttps://doi.org/10.1016/j.procs.2018.07.017   DOI
18 Khot, S.M. and Khan, Y. (2015), "Simulation of active vibration control of a cantilever beam using LQR, LQG and $H-{\infty}$ optimal controllers", J. Vib. Anal. Measur. Control, 3(2), 134-151.
19 Khurram, A.A., Rakha, S.A., Ali, N., Asim, M.T., Guorui, Z. and Munir, A. (2015), "Microwave absorbing properties of lightweight nanocomposite/honeycomb sandwich structures", J. Nanotechnol. Eng., 6(1), 110-117. https://doi.org/10.1115/1.4031472
20 Noh, M.S., Kim, S., Hwang, D.K. and Kang, C.Y. (2017), "Selfpowered flexible touch sensors based on PZT thin films using laser lift-off", Sensor Actuator Phys., 261, 288-294. https://doi.org/10.1016/j.sna.2017.04.046   DOI
21 Park, M., Lee, K.S., Shim, J., Liu, Y., Lee, C. and Cho, H. (2016), "Environment friendly, transparent nanofiber textiles consolidated with high efficiency PLEDs for wearable electronics", Org. Electron., 36, 89-96. https://doi.org/10.1016/j.orgel.2016.05.030   DOI
22 Qin, Y., Li, Y.W., Lan, X.Z., Su, Y.S., Wang, X.Y. and Wu, Y.D. (2019), "Structural behavior of the stiffened double-skin profiled composite walls under compression", Steel Compos. Struct., Int. J., 31(1), 1-12. https://doi.org/10.12989/scs.2019.31.1.001
23 Rahman, N., Alam, M.N. an Junaid, M. (2018), "Active vibration control of composite shallow shells: An integrated approach", J. Mech. Eng. Sci., 12(1), 3354-3369. https://doi.org/10.15282/jmes.12.1.2018.6.0300   DOI
24 Zghal, A., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B, 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037   DOI
25 Yang, M., Hu, Y., Zhang, J., Ding, G. and Song, C. (2018b), "Analytical model for flexural damping responses of CFRP cantilever beams in the low-frequency vibration", J. Low Freq. Noise Vib. Act. Control, 37(4), 669-681. https://doi.org/10.1177/1461348418756024   DOI
26 Yavuz, S. (2019), "An enhanced method to control the residual vibrations of a single-link flexible glass fabric reinforced epoxyglass composite manipulator", Compos. Part B, 159(15), 405-417. https://doi.org/10.1016/j.compositesb.2018.10.019   DOI
27 Zeng, Z., Gai, L., Petitpas, A., Li, Y., Luo, H. and Wang, D. (2017), "A flexible, sandwich structure piezoelectric energy harvester using PIN-PMN-PT/epoxy 2-2 composite flake for wearable application", Sensor Actuator Phys., 265, 62-69. https://doi.org/10.1016/j.sna.2017.07.059   DOI
28 Zhang, Y., Campbell, S.A., Zhang, L. and Karthikeyan, S. (2017), "Sandwich structure based on back-side etching silicon (100) wafers for flexible electronic technology", Microsys. Technol., 23(3), 739-743. https://doi.org/10.1007/s00542-015-2737-7   DOI
29 Zhang, Z., Yang, J., He, X., Han, Y., Zhang, J., Huang, J., Chen, D. and Xu, S. (2018a), "Active control of broadband plasmoninduced transparency in a terahertz hybrid metal-graphene metamaterial", RSC Advances, 8, 27746-27753. https://doi.org/10.1039/C8RA04329A   DOI
30 Kim, B. and Yoon, J.Y. (2018), "Modified LMS strategies using internal model control for active noise and vibration control systems", Appl. Sci., 8(6), 1007-1023. https://doi.org/10.3390/app8061007   DOI
31 Kim, M., Park, Y. and, Okoli, O.I. (2009), "Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites", Compos. Sci. Technol., 69, 335-342. https://doi.org/10.1016/j.compscitech.2008.10.019   DOI
32 Klein, R.G. and Nachtigal, C.L. (2013), "The application of active control to improve boring bar performance", J. Dyn. Syst. Meas. Control, 97(2), 179-183. https://doi.org/10.1115/1.3426899   DOI
33 Konka, H.P., Wahab, M.A. and Lian, K. (2012), "On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors", J. Eng. Mater. Technol., Transactions of the ASME, 134(1), 349-361. https://doi.org/10.1115/1.4005349
34 Kpeky, F., Abed-Meraim, F., Daya, E.M. and Samah, O.D. (2018), "Modeling of hybrid vibration control for multilayer structures using solid-shell finite elements", Mech. Adv. Mater. Struct., 5(12), 1033-1046. https://doi.org/10.1080/15376494.2017.1365987
35 Rojas, A.R. and Carcaterra, A. (2018), "An approach to optimal semi-active control of vibration energy harvesting based on MEMS", Mech. Syst. Sig. Proc., 107, 291-316. https://doi.org/10.1016/j.ymssp.2017.11.005   DOI
36 Rahmani, B. (2018), "Adaptive fuzzy sliding mode control for vibration suppression of a rotating carbon nanotube-reinforced composite beam", J. Vib. Control, 24(2), 2447-2463. https://doi.org/10.1177/1077546316687937   DOI
37 Raju, G., Wu, Z. and Weaver, P.M. (2015), "Buckling analysis of variable angle tow composite plates using differential quadrature method", J. Indian Ins. Sci., 93(4), 635-688.
38 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, (2nd ed.), New York, NY, USA, CRC Press.
39 Kumar, R.S. and Ray, M.C. (2016), "Smart damping of geometrically nonlinear vibrations of functionally graded sandwich plates using 1-3 piezoelectric composites", Mech. Adv. Mater. Struct., 23(6), 652-669. https://doi.org/10.1080/15376494.2015.1028692   DOI
40 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNTreinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039   DOI
41 Damanpack, A.R. and Khalili, S.M.R. (2012), "High-order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method", Compos. Struct., 94, 1503-1514. https://doi.org/10.1016/j.compstruct.2011.08.023   DOI
42 Rao Patange, S.S., Raja, S., Vijayakumar, M.P. and Ranganath, V.R. (2018), "Study on low frequency energy harvesting system in laminated aluminum beam structures with delamination", J. Mech. Sci. Technol., 32(5), 1985-1993. https://doi.org/10.1007/s12206-018-0406-3   DOI
43 Sapra, G., Sharma, M. and Vig, R. (2018), "Active vibration control of a beam instrumented with MWCNT/epoxy nanocomposite sensor and PZT-5H actuator, robust to variations in temperature", Microsyst. Technol., 24(3), 1683-1694. https://doi.org/10.1007/s00542-017-3551-1   DOI
44 Sharif Zarei, M., Hajmohammad, M.H., Kolahchi, R. and Karami, H. (2018), "Dynamic response control of aluminum beams integrated with nanocomposite piezoelectric layers subjected to blast load using hyperbolic viscopiezo-elasticity theory", J. Sandw. Struct. Mater., 1-28. https://doi.org/10.1177/1099636218785316   DOI
45 Collina, A., Facchinetti, A., Fossati, F. and Resta, F. (2005), "An application of active control to the collector of an high-speed pantograph: simulation and laboratory tests", Proceedings of the 44th IEEE Conference on Decision and Control.
46 Chuaqui, T.R.C., Roque1, C.M.C. and Ribeiro, P. (2018), "Active vibration control of piezoelectric smart beams with radial basis function generated finite difference collocation method", J. Intel. Mater. Syst. Struct., 29(13), 2728-2743. https://doi.org/10.1177/1045389X18778363   DOI
47 Frikha, A., Zghal, A. and Dammak, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell elementis", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048   DOI
48 Gibson, R.F. (1994), Principles of Composite Material Mechanics, New York, NY, USA, McGraw-Hill, Inc.
49 Ghorbanpour Arani, A. and Khoddami Maraghi, Z. (2015), "A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory", Ain Shams Eng. J., 7(1), 361-369. https://doi.org/10.1016/j.asej.2015.04.010   DOI
50 Ghorbanpour Arani, A., Zarei, B. and Haghparast, E. (2016), "Application of Halpin-Tsai method in modelling and sizedependent vibration analysis of CNTs/fiber/polymer composite microplates", J. Comput. Appl. Mech., 47, 42-52. https://doi.org/10.22059/jcamech.2016.59254
51 Ma, G., Xu, M., Zhang, S., Zhang, Y. and Liu, X. (2018), "Active vibration control of an axially moving cantilever structure using PZT actuator", J. Aerosp. Eng., 31(5), 04018049. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000853   DOI
52 Kumara, A., Pandaa, S., Kumarb, A. and Narsaria, V. (2018), "Performance of a graphite wafer-reinforced viscoelastic composite layer for active-passive damping of plate vibration", Compos. Struct., 186, 303-314. https://doi.org/10.1016/j.compstruct.2017.12.019   DOI
53 Lakshmipathi, J. and Vasudevan, R. (2019), "Dynamic characterization of a CNT reinforced hybrid uniform and nonuniform composite plates", Steel Compos. Struct., Int. J., 30(1), 31-46. https://doi.org/10.12989/scs.2019.30.1.031
54 Li, J., Li, F. and Narita, Y. (2018), "Active control of thermal buckling and vibration for a sandwich composite laminated plate with piezoelectric fiber reinforced composite actuator facesheets", J. Sandw. Struct. Mater., 12, 1-19. https://doi.org/10.1177/1099636218783168
55 Masmoudi, S., El Mahi, A. and Turki, S. (2015), "Use of piezoelectric as acoustic emission sensor for in situ monitoring of composite structures", Compos. B. Eng., 80, 307-320. https://doi.org/10.1016/j.compositesb.2015.06.003   DOI
56 Mevada, J.R. and Prajapati, J.M. (2018), "Active vibration control of smart beam under parametric variations", J. Brazil. Soc. Mech. Sci. Eng., 40, 394-405. https://doi.org/10.1007/s40430-018-1310-6   DOI
57 Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2018a), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119(1), 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005
58 Toledo, J., Ruiz-Diez, V., Diaz, A., Ruiz, D., Donoso, A., Bellido, J.C., Wistrela, E., Kucera, M., Schmid, U., Hernando-Garcia, J. and Sanchez-Rojas, J.L. (2017), "Design and characterization of in-plane piezoelectric microactuators", Actuators, 6(2), 19-32. https://doi.org/10.3390/act6020019   DOI
59 Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198(37-40), 2911-2935. ttps://doi.org/10.1016/j.cma.2009.04.011   DOI
60 Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89(1), 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016   DOI
61 Arani, A.G., Haghparast, E. and Zarei, H.B.A. (2016), "Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation", Struct. Eng. Mech., Int. J., 57(1), 105-126. https://doi.org/10.12989/sem.2016.57.1.105   DOI
62 Ghosh, S., Agrawal, S., Pradhan, A.K. and Pandit, M.K. (2015), "Performance of vertically reinforced 1-3 piezo composites for active damping of smart sandwich beams", J. Sandw. Struct. Mater., 17(3), 258-277. https://doi.org/10.1177/1099636214565656   DOI
63 Zhang, X.Y., Wang, R.X., Zhang, S.Q., Wang, Z.X., Qin, X.S. and Schmidt, R. (2018b), "Generalized-disturbance rejection control for vibration suppression of piezoelectric laminated flexible structures", Shock Vib., 1538936. https://doi.org/10.1155/2018/1538936
64 Zonghong, X., Wei, Z., Peng, Z. and Xiang, L. (2017), "Design and development of conformal antennacomposite structure", Smart Mater. Struct., 26(9), 095009. https://doi.org/10.1088/1361-665X/aa7918   DOI
65 Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2017), "Dynamic stability of MSGT sinusoidal viscoelastic piezoelectric polymeric FG-SWNT reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermoelectro-magneto-mechanical loadings", Mech. Adv. Mater. Struct., 24, 1325-1342. https://doi.org/10.1080/15376494.2016.1227507   DOI
66 Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B: Eng., 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035   DOI
67 Alankaya, V. (2017), "Analytical study on the mechanical performance of composite sandwich shells for dielectric radar domes", J. Sandw. Struct. Mater., 19(1), 108-130. https://doi.org/10.1177/1099636215613296   DOI
68 Arani, A.G., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Tech. Phys., 52(5), 815-824. https://doi.org/10.1134/S0021894411050178   DOI
69 Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos. Struct., Int. J., 29(5), 579-590. https://doi.org/10.12989/scs.2018.29.5.579
70 Tornabene, F., Liverani, A. and Caligiana, G. (2018b), "FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: A 2-D GDQ solution for free vibrations", Int. J. Mech. Sci., 53(6), 446-470. https://doi.org/10.1016/j.ijmecsci.2011.03.007   DOI
71 Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047   DOI
72 Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016a), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of doublecoupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B, 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007   DOI
73 Mohammadimehr, M. and Shahedi, S. (2016), "Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM", Steel Compos. Struct., Int. J., 21(1), 1-36. https://doi.org/10.12989/scs.2016.21.1.001   DOI
74 Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015a), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077   DOI
75 Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015b), "Surface stress effect on the nonlocal biaxial buckling and bending analysis of polymeric piezoelectric nanoplate reinforced by CNT using eshelby-mori-tanaka approach", J. Solid Mech., 7(2), 173-190.
76 Mohammadimehr, M., Rostami, R. and Arefi, M. (2016b), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., Int. J., 20(3), 513-544. https://doi.org/10.12989/scs.2016.20.3.513   DOI
77 Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016c), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermomechanical loadings using DQM", Compo. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055   DOI
78 Wang, X. and Liang, X. (2017), "Free vibration of soft-core sandwich panels with general boundary conditions by harmonic quadrature element method", Thin-Wall. Struct., 113, 253-261. https://doi.org/10.1016/j.tws.2016.12.004   DOI
79 Tummala, V.S., Mian, A., Chamok, N.H., Poduval, D., Ali, M. and Clifford, J. (2017), "Three dimensional printed dielectric substrates for radio frequency applications", J. Electron. Packaging, Transactions of the ASME, 139(2), 020904. https://doi.org/10.1115/1.4036384   DOI
80 Uriri, S.A., Tashima, T., Zhang, X., Asano, M., Bechu, M., Guney, D.O., Yamamoto, T., Ozdemir, S.K., Wegener, M. and Tame, M.S. (2018), "Active control of a plasmonic metamaterial for quantum state engineering", Phys. Rev. A, 97, 053810. https://doi.org/10.1103/PhysRevA.97.053810   DOI
81 Wu, Y., Liu, Q., Fu, J., Li, Q. and Hui, D. (2017), "Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels", Compos. B Eng., 121, 122-133. https://doi.org/10.1016/j.compositesb.2017.03.030   DOI
82 Xie, C., Wu, Y. and Liu, Z. (2018), "Modeling and active vibration control of lattice grid beam with piezoelectric fiber composite using fractional order $PD{\mu}$ algorithm", Compos. Struct., 198, 126-134. https://doi.org/10.1016/j.compstruct.2018.05.060   DOI
83 Yang, M. and Qiao, P. (2005), "Higher-order impact modeling of sandwich structures with flexible core", Int. J. Solids Struct., 42, 5460-5490. https://doi.org/10.1016/j.ijsolstr.2005.02.037   DOI
84 He, Y., Chen, X., Liu, Z. and Qin, Y. (2018), "Piezoelectric selfsensing actuator for active vibration control of motorized spindle based on adaptive signal separation", Smart Mater. Struct., 27, 065011-65022. https://doi.org/10.1088/1361-665X/aabbf4   DOI
85 Gudarzi, M. and Zamanian, H. (2013), "Application of active vibration control for earthquake protection of multi structural buildings", Int. J. Sci. Res. Know. (IJSRK), 1(11), 502-513. http://dx.doi.org/10.12983/ijsrk-2013-p502-513   DOI
86 Guo, Z.K., Yang, X.D. and Zhang, W. (2018), "Dynamic analysis, active and passive vibration control of double-layer hourglass lattice truss structures", J. Sandw. Struct. Mater., 1-28. https://doi.org/10.1177/1099636218784339   DOI
87 Hamed, E. and Rabinovitch, O. (2009), "Modeling and dynamics of sandwich beams with a viscoelastic soft core", AIAA Journal, 47(9), 2194-2211. https://doi.org/10.2514/1.41840   DOI
88 Houari, A., Adda Bedia, E.A. and Tounsi, A. (2016), "Sizedependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963   DOI
89 Karagiannis, D. and Radisavljevic-Gajic, V. (2018), "Siding mode boundary control of an Euler Bernoulli beam subject to disturbances", J. Vib. Control, 24(6), 1109-1122. https://doi.org/10.1109/TAC.2018.2793940   DOI
90 Kant, M. and Parameswaran, A.P. (2018), "Modeling of low frequency dynamics of a smart system and its state feedback based active control", Mech. Syst. Sig. Proc., 99, 774-789. https://doi.org/10.1016/j.ymssp.2017.07.018   DOI
91 Kent, L.G. and Sommerfeldt, S.D. (2004), "Application of theoretical modeling to multichannel active control of cooling fan noise", J. Acoust. Soc. America, 115, 228-240. https://doi.org/10.1121/1.1631940   DOI