DOI QR코드

DOI QR Code

Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory

  • Navi, B. Rousta (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, M. (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Arani, A. Ghorbanpour (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2019.04.14
  • Accepted : 2019.09.03
  • Published : 2019.09.25

Abstract

Vibration control in mechanical equipments is an important problem where unwanted vibrations are vanish or at least diminished. In this paper, free vibration active control of the porous sandwich piezoelectric polymeric nanocomposite microbeam with microsensor and microactuater layers are investigated. The aim of this research is to reduce amplitude of vibration in micro beam based on linear quadratic regulator (LQR). Modified couple stress theory (MCST) according to sinusoidal shear deformation theory is presented. The porous sandwich microbeam is rested on elastic foundation. The core and face sheet are made of porous and three-phase carbon nanotubes/resin/fiber nanocomposite materials. The equations of motion are extracted by Hamilton's principle and then Navier's type solution are employed for solving them. The governing equations of motion are written in space state form and linear quadratic regulator (LQR) is used for active control approach. The various parameters are conducted to investigate on the frequency response function (FRF) of the sandwich microbeam for vibration active control. The results indicate that the higher length scale to the thickness, the face sheet thickness to total thickness and the considering microsensor and microactutor significantly affect LQR and uncontrolled FRF. Also, the porosity coefficient increasing, Skempton coefficient and Winkler spring constant shift the frequency response to higher frequencies. The obtained results can be useful for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Keywords

Acknowledgement

Supported by : Iranian National Science Foundation (INSF)

References

  1. Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B: Eng., 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035
  2. Alankaya, V. (2017), "Analytical study on the mechanical performance of composite sandwich shells for dielectric radar domes", J. Sandw. Struct. Mater., 19(1), 108-130. https://doi.org/10.1177/1099636215613296
  3. Arani, A.G., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Tech. Phys., 52(5), 815-824. https://doi.org/10.1134/S0021894411050178
  4. Arani, A.G., Haghparast, E. and Zarei, H.B.A. (2016), "Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation", Struct. Eng. Mech., Int. J., 57(1), 105-126. https://doi.org/10.12989/sem.2016.57.1.105
  5. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos. Struct., Int. J., 29(5), 579-590. https://doi.org/10.12989/scs.2018.29.5.579
  6. Beheshti-Aval, S. and Lezgy-Nazargah, M. (2012), "A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams", Arch. Appl. Mech., 82(12), 1709-1752. https://doi.org/10.1007/s00419-012-0621-9
  7. Beheshti-Aval, S. and Lezgy-Nazargah, M. (2013), "Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams", Meccanica, 48(6), 1479-1500. https://doi.org/10.1007/s11012-012-9679-2
  8. Belyaev, A.K., Fedotov, A.V., Irschik, H., Nader, M., Polyanskiy, V.A. and Smirnova, N.A. (2017), "Experimental study of local and modal approaches to active vibration control of elastic systems", Struct. Control Health Monitor., 25(2), 10-30. https://doi.org/10.1002/stc.2105
  9. Bhardwaj, G., Upadhyay, A.K. and Pandey, R. (2013), "Non-linear flexural and dynamic response of CNT reinforced laminated composite plates", Compos. Part B., 45, 89-100. https://doi.org/10.1016/j.compositesb.2012.09.004
  10. Bitaraf, M., Ozbulut, O.E., Hurlebaus, S. and Barroso, L. (2010), "Application of semi active control strategies for seismic protection of buildings with MR dampers", Eng. Struct., 32(10), 3040-3047. https://doi.org/10.1016/j.engstruct.2010.05.023
  11. Botta, F. and Toccaceli, F. (2018), "Piezoelectric plate's distribution for active control of torsional vibrations", Actuators, 7(2), 23-40. https://doi.org/10.3390/act7020023
  12. Chhabra, D., Narwal, K. and Singh, P. (2012), "Design and analysis of piezoelectric smart beam for active vibration control", Int. J. Adv. Res. Technol., 1(1), 1-5.
  13. Choi, I., Kim, J.G., Seo, I.S. and Lee, D.G. (2012), "Radar absorbing sandwich construction composed of CNT, PMI foam and carbon/epoxy composite", Compos. Struct., 94(9), 3002-3008. https://doi.org/10.1016/j.compstruct.2012.04.009
  14. Collina, A., Facchinetti, A., Fossati, F. and Resta, F. (2005), "An application of active control to the collector of an high-speed pantograph: simulation and laboratory tests", Proceedings of the 44th IEEE Conference on Decision and Control.
  15. Chuaqui, T.R.C., Roque1, C.M.C. and Ribeiro, P. (2018), "Active vibration control of piezoelectric smart beams with radial basis function generated finite difference collocation method", J. Intel. Mater. Syst. Struct., 29(13), 2728-2743. https://doi.org/10.1177/1045389X18778363
  16. Damanpack, A.R. and Khalili, S.M.R. (2012), "High-order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method", Compos. Struct., 94, 1503-1514. https://doi.org/10.1016/j.compstruct.2011.08.023
  17. Frikha, A., Zghal, A. and Dammak, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell elementis", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048
  18. Gibson, R.F. (1994), Principles of Composite Material Mechanics, New York, NY, USA, McGraw-Hill, Inc.
  19. Ghorbanpour Arani, A. and Khoddami Maraghi, Z. (2015), "A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory", Ain Shams Eng. J., 7(1), 361-369. https://doi.org/10.1016/j.asej.2015.04.010
  20. Ghorbanpour Arani, A., Zarei, B. and Haghparast, E. (2016), "Application of Halpin-Tsai method in modelling and sizedependent vibration analysis of CNTs/fiber/polymer composite microplates", J. Comput. Appl. Mech., 47, 42-52. https://doi.org/10.22059/jcamech.2016.59254
  21. Ghosh, S., Agrawal, S., Pradhan, A.K. and Pandit, M.K. (2015), "Performance of vertically reinforced 1-3 piezo composites for active damping of smart sandwich beams", J. Sandw. Struct. Mater., 17(3), 258-277. https://doi.org/10.1177/1099636214565656
  22. Gudarzi, M. and Zamanian, H. (2013), "Application of active vibration control for earthquake protection of multi structural buildings", Int. J. Sci. Res. Know. (IJSRK), 1(11), 502-513. http://dx.doi.org/10.12983/ijsrk-2013-p502-513
  23. Guo, Z.K., Yang, X.D. and Zhang, W. (2018), "Dynamic analysis, active and passive vibration control of double-layer hourglass lattice truss structures", J. Sandw. Struct. Mater., 1-28. https://doi.org/10.1177/1099636218784339
  24. Hamed, E. and Rabinovitch, O. (2009), "Modeling and dynamics of sandwich beams with a viscoelastic soft core", AIAA Journal, 47(9), 2194-2211. https://doi.org/10.2514/1.41840
  25. He, Y., Chen, X., Liu, Z. and Qin, Y. (2018), "Piezoelectric selfsensing actuator for active vibration control of motorized spindle based on adaptive signal separation", Smart Mater. Struct., 27, 065011-65022. https://doi.org/10.1088/1361-665X/aabbf4
  26. Houari, A., Adda Bedia, E.A. and Tounsi, A. (2016), "Sizedependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  27. Kant, M. and Parameswaran, A.P. (2018), "Modeling of low frequency dynamics of a smart system and its state feedback based active control", Mech. Syst. Sig. Proc., 99, 774-789. https://doi.org/10.1016/j.ymssp.2017.07.018
  28. Karagiannis, D. and Radisavljevic-Gajic, V. (2018), "Siding mode boundary control of an Euler Bernoulli beam subject to disturbances", J. Vib. Control, 24(6), 1109-1122. https://doi.org/10.1109/TAC.2018.2793940
  29. Kent, L.G. and Sommerfeldt, S.D. (2004), "Application of theoretical modeling to multichannel active control of cooling fan noise", J. Acoust. Soc. America, 115, 228-240. https://doi.org/10.1121/1.1631940
  30. Khana, S., Saib, Y. and Prabu, M. (2018), "Active control of smart shape memory alloy composite flapper for aerodynamic applications", Procedia Compos. Sci., 133, 134-140. ttps://doi.org/10.1016/j.procs.2018.07.017
  31. Khot, S.M. and Khan, Y. (2015), "Simulation of active vibration control of a cantilever beam using LQR, LQG and $H-{\infty}$ optimal controllers", J. Vib. Anal. Measur. Control, 3(2), 134-151.
  32. Khurram, A.A., Rakha, S.A., Ali, N., Asim, M.T., Guorui, Z. and Munir, A. (2015), "Microwave absorbing properties of lightweight nanocomposite/honeycomb sandwich structures", J. Nanotechnol. Eng., 6(1), 110-117. https://doi.org/10.1115/1.4031472
  33. Kim, B. and Yoon, J.Y. (2018), "Modified LMS strategies using internal model control for active noise and vibration control systems", Appl. Sci., 8(6), 1007-1023. https://doi.org/10.3390/app8061007
  34. Kim, M., Park, Y. and, Okoli, O.I. (2009), "Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites", Compos. Sci. Technol., 69, 335-342. https://doi.org/10.1016/j.compscitech.2008.10.019
  35. Klein, R.G. and Nachtigal, C.L. (2013), "The application of active control to improve boring bar performance", J. Dyn. Syst. Meas. Control, 97(2), 179-183. https://doi.org/10.1115/1.3426899
  36. Konka, H.P., Wahab, M.A. and Lian, K. (2012), "On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors", J. Eng. Mater. Technol., Transactions of the ASME, 134(1), 349-361. https://doi.org/10.1115/1.4005349
  37. Kpeky, F., Abed-Meraim, F., Daya, E.M. and Samah, O.D. (2018), "Modeling of hybrid vibration control for multilayer structures using solid-shell finite elements", Mech. Adv. Mater. Struct., 5(12), 1033-1046. https://doi.org/10.1080/15376494.2017.1365987
  38. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNTreinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039
  39. Kumar, R.S. and Ray, M.C. (2016), "Smart damping of geometrically nonlinear vibrations of functionally graded sandwich plates using 1-3 piezoelectric composites", Mech. Adv. Mater. Struct., 23(6), 652-669. https://doi.org/10.1080/15376494.2015.1028692
  40. Kumara, A., Pandaa, S., Kumarb, A. and Narsaria, V. (2018), "Performance of a graphite wafer-reinforced viscoelastic composite layer for active-passive damping of plate vibration", Compos. Struct., 186, 303-314. https://doi.org/10.1016/j.compstruct.2017.12.019
  41. Lakshmipathi, J. and Vasudevan, R. (2019), "Dynamic characterization of a CNT reinforced hybrid uniform and nonuniform composite plates", Steel Compos. Struct., Int. J., 30(1), 31-46. https://doi.org/10.12989/scs.2019.30.1.031
  42. Li, J., Li, F. and Narita, Y. (2018), "Active control of thermal buckling and vibration for a sandwich composite laminated plate with piezoelectric fiber reinforced composite actuator facesheets", J. Sandw. Struct. Mater., 12, 1-19. https://doi.org/10.1177/1099636218783168
  43. Ma, G., Xu, M., Zhang, S., Zhang, Y. and Liu, X. (2018), "Active vibration control of an axially moving cantilever structure using PZT actuator", J. Aerosp. Eng., 31(5), 04018049. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000853
  44. Masmoudi, S., El Mahi, A. and Turki, S. (2015), "Use of piezoelectric as acoustic emission sensor for in situ monitoring of composite structures", Compos. B. Eng., 80, 307-320. https://doi.org/10.1016/j.compositesb.2015.06.003
  45. Mevada, J.R. and Prajapati, J.M. (2018), "Active vibration control of smart beam under parametric variations", J. Brazil. Soc. Mech. Sci. Eng., 40, 394-405. https://doi.org/10.1007/s40430-018-1310-6
  46. Mohammadimehr, M. and Shahedi, S. (2016), "Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM", Steel Compos. Struct., Int. J., 21(1), 1-36. https://doi.org/10.12989/scs.2016.21.1.001
  47. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015a), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077
  48. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015b), "Surface stress effect on the nonlocal biaxial buckling and bending analysis of polymeric piezoelectric nanoplate reinforced by CNT using eshelby-mori-tanaka approach", J. Solid Mech., 7(2), 173-190.
  49. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016a), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of doublecoupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B, 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
  50. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016b), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., Int. J., 20(3), 513-544. https://doi.org/10.12989/scs.2016.20.3.513
  51. Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016c), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermomechanical loadings using DQM", Compo. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055
  52. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2017), "Dynamic stability of MSGT sinusoidal viscoelastic piezoelectric polymeric FG-SWNT reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermoelectro-magneto-mechanical loadings", Mech. Adv. Mater. Struct., 24, 1325-1342. https://doi.org/10.1080/15376494.2016.1227507
  53. Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018a) "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405
  54. Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018b), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., Int. J., 26(4), 513-531. https://doi.org/10.12989/scs.2018.26.4.513
  55. Moita, S.J., Araujo, L.A., Correia, V.F., Mota, C.M. and Herskovits, S.J. (2018), "Active-passive damping in functionally graded sandwich plate/shell structures", Compos. Struct., 202, 324-332. https://doi.org/10.1016/j.compstruct.2018.01.089
  56. Nath, J.K. and Kapuria, S. (2012), "Assessment of improved zigzag and smeared theories for smart cross-ply composite cylindrical shells including transverse normal extensibility under thermoelectric loading", Arch. Appl. Mech., 82(7), 859-877. https://doi.org/10.1007/s00419-011-0597-x
  57. Nguyen-Quang, K., Vo-Duy, T., Dang-Trung, H. and Nguyen-Thoi, T. (2018), "An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers", Comput. Methods Appl. Mech. Eng., 332(15), 25-46. https://doi.org/10.1016/j.cma.2017.12.010
  58. Noh, M.S., Kim, S., Hwang, D.K. and Kang, C.Y. (2017), "Selfpowered flexible touch sensors based on PZT thin films using laser lift-off", Sensor Actuator Phys., 261, 288-294. https://doi.org/10.1016/j.sna.2017.04.046
  59. Park, S. and Yossifon, G. (2018), "Electro-thermal based active control of ion transport in a microfluidic device with an ion-perm selective membrane", Nanoscale, 10, 11633-11641. https://doi.org/10.1039/C8NR02389A
  60. Park, M., Lee, K.S., Shim, J., Liu, Y., Lee, C. and Cho, H. (2016), "Environment friendly, transparent nanofiber textiles consolidated with high efficiency PLEDs for wearable electronics", Org. Electron., 36, 89-96. https://doi.org/10.1016/j.orgel.2016.05.030
  61. Qin, Y., Li, Y.W., Lan, X.Z., Su, Y.S., Wang, X.Y. and Wu, Y.D. (2019), "Structural behavior of the stiffened double-skin profiled composite walls under compression", Steel Compos. Struct., Int. J., 31(1), 1-12. https://doi.org/10.12989/scs.2019.31.1.001
  62. Rahman, N., Alam, M.N. an Junaid, M. (2018), "Active vibration control of composite shallow shells: An integrated approach", J. Mech. Eng. Sci., 12(1), 3354-3369. https://doi.org/10.15282/jmes.12.1.2018.6.0300
  63. Rahmani, B. (2018), "Adaptive fuzzy sliding mode control for vibration suppression of a rotating carbon nanotube-reinforced composite beam", J. Vib. Control, 24(2), 2447-2463. https://doi.org/10.1177/1077546316687937
  64. Raju, G., Wu, Z. and Weaver, P.M. (2015), "Buckling analysis of variable angle tow composite plates using differential quadrature method", J. Indian Ins. Sci., 93(4), 635-688.
  65. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, (2nd ed.), New York, NY, USA, CRC Press.
  66. Rojas, A.R. and Carcaterra, A. (2018), "An approach to optimal semi-active control of vibration energy harvesting based on MEMS", Mech. Syst. Sig. Proc., 107, 291-316. https://doi.org/10.1016/j.ymssp.2017.11.005
  67. Rao Patange, S.S., Raja, S., Vijayakumar, M.P. and Ranganath, V.R. (2018), "Study on low frequency energy harvesting system in laminated aluminum beam structures with delamination", J. Mech. Sci. Technol., 32(5), 1985-1993. https://doi.org/10.1007/s12206-018-0406-3
  68. Sapra, G., Sharma, M. and Vig, R. (2018), "Active vibration control of a beam instrumented with MWCNT/epoxy nanocomposite sensor and PZT-5H actuator, robust to variations in temperature", Microsyst. Technol., 24(3), 1683-1694. https://doi.org/10.1007/s00542-017-3551-1
  69. Sharif Zarei, M., Hajmohammad, M.H., Kolahchi, R. and Karami, H. (2018), "Dynamic response control of aluminum beams integrated with nanocomposite piezoelectric layers subjected to blast load using hyperbolic viscopiezo-elasticity theory", J. Sandw. Struct. Mater., 1-28. https://doi.org/10.1177/1099636218785316
  70. Toledo, J., Ruiz-Diez, V., Diaz, A., Ruiz, D., Donoso, A., Bellido, J.C., Wistrela, E., Kucera, M., Schmid, U., Hernando-Garcia, J. and Sanchez-Rojas, J.L. (2017), "Design and characterization of in-plane piezoelectric microactuators", Actuators, 6(2), 19-32. https://doi.org/10.3390/act6020019
  71. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198(37-40), 2911-2935. ttps://doi.org/10.1016/j.cma.2009.04.011
  72. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89(1), 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
  73. Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2018a), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119(1), 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005
  74. Tornabene, F., Liverani, A. and Caligiana, G. (2018b), "FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: A 2-D GDQ solution for free vibrations", Int. J. Mech. Sci., 53(6), 446-470. https://doi.org/10.1016/j.ijmecsci.2011.03.007
  75. Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047
  76. Tummala, V.S., Mian, A., Chamok, N.H., Poduval, D., Ali, M. and Clifford, J. (2017), "Three dimensional printed dielectric substrates for radio frequency applications", J. Electron. Packaging, Transactions of the ASME, 139(2), 020904. https://doi.org/10.1115/1.4036384
  77. Uriri, S.A., Tashima, T., Zhang, X., Asano, M., Bechu, M., Guney, D.O., Yamamoto, T., Ozdemir, S.K., Wegener, M. and Tame, M.S. (2018), "Active control of a plasmonic metamaterial for quantum state engineering", Phys. Rev. A, 97, 053810. https://doi.org/10.1103/PhysRevA.97.053810
  78. Wang, X. and Liang, X. (2017), "Free vibration of soft-core sandwich panels with general boundary conditions by harmonic quadrature element method", Thin-Wall. Struct., 113, 253-261. https://doi.org/10.1016/j.tws.2016.12.004
  79. Wu, Y., Liu, Q., Fu, J., Li, Q. and Hui, D. (2017), "Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels", Compos. B Eng., 121, 122-133. https://doi.org/10.1016/j.compositesb.2017.03.030
  80. Xie, C., Wu, Y. and Liu, Z. (2018), "Modeling and active vibration control of lattice grid beam with piezoelectric fiber composite using fractional order $PD{\mu}$ algorithm", Compos. Struct., 198, 126-134. https://doi.org/10.1016/j.compstruct.2018.05.060
  81. Yang, M. and Qiao, P. (2005), "Higher-order impact modeling of sandwich structures with flexible core", Int. J. Solids Struct., 42, 5460-5490. https://doi.org/10.1016/j.ijsolstr.2005.02.037
  82. Yang, L., Fan, H., Liu, J., Ma, Y. and Zheng, Q. (2013), "Hybrid lattice-core sandwich composites designed for microwave absorption", Mater. Des., 50, 863-871. https://doi.org/10.1016/j.matdes.2013.03.032
  83. Yang, L., Liu, S., Zhang, H., Wu, H., Li, H. and Jiang, J. (2018a), "Hybrid Filtered-x adaptive vibration control with internal feedback and online identification", Shock and Vib., 9010567. https://doi.org/10.1155/2018/9010567
  84. Yang, M., Hu, Y., Zhang, J., Ding, G. and Song, C. (2018b), "Analytical model for flexural damping responses of CFRP cantilever beams in the low-frequency vibration", J. Low Freq. Noise Vib. Act. Control, 37(4), 669-681. https://doi.org/10.1177/1461348418756024
  85. Yavuz, S. (2019), "An enhanced method to control the residual vibrations of a single-link flexible glass fabric reinforced epoxyglass composite manipulator", Compos. Part B, 159(15), 405-417. https://doi.org/10.1016/j.compositesb.2018.10.019
  86. Zeng, Z., Gai, L., Petitpas, A., Li, Y., Luo, H. and Wang, D. (2017), "A flexible, sandwich structure piezoelectric energy harvester using PIN-PMN-PT/epoxy 2-2 composite flake for wearable application", Sensor Actuator Phys., 265, 62-69. https://doi.org/10.1016/j.sna.2017.07.059
  87. Zghal, A., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B, 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037
  88. Zhang, Y., Campbell, S.A., Zhang, L. and Karthikeyan, S. (2017), "Sandwich structure based on back-side etching silicon (100) wafers for flexible electronic technology", Microsys. Technol., 23(3), 739-743. https://doi.org/10.1007/s00542-015-2737-7
  89. Zhang, Z., Yang, J., He, X., Han, Y., Zhang, J., Huang, J., Chen, D. and Xu, S. (2018a), "Active control of broadband plasmoninduced transparency in a terahertz hybrid metal-graphene metamaterial", RSC Advances, 8, 27746-27753. https://doi.org/10.1039/C8RA04329A
  90. Zhang, X.Y., Wang, R.X., Zhang, S.Q., Wang, Z.X., Qin, X.S. and Schmidt, R. (2018b), "Generalized-disturbance rejection control for vibration suppression of piezoelectric laminated flexible structures", Shock Vib., 1538936. https://doi.org/10.1155/2018/1538936
  91. Zonghong, X., Wei, Z., Peng, Z. and Xiang, L. (2017), "Design and development of conformal antennacomposite structure", Smart Mater. Struct., 26(9), 095009. https://doi.org/10.1088/1361-665X/aa7918

Cited by

  1. Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation vol.27, pp.2, 2019, https://doi.org/10.12989/cac.2021.27.2.111