• 제목/요약/키워드: Solid hydrogen storage

검색결과 38건 처리시간 0.029초

고체상 수소저장기술 동향 (Review : Hydrogen Storage in Solid State)

  • 이준웅
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.1153-1171
    • /
    • 2010
  • Hydrogen is the most abundant element in the universe. Although hydrogen can produce three times more energy than gasoline and seven times than coal, the most challenging problem in utilizing hydrogen as energy carrier is its storage problem. In contrast to the liquid hydrocarbon, hydrogen can not be stored or transported easily and safely because of its extremely low boiling point(21K). Recently scientists have made a tremendous achievement in storing hydrogen capacity in solid state materials such as carbon based and metal organic frameworks materials as well as metal hydrides. In this review the author reviewed the status of the hydrogen storage technologies in solid state, the advantages and disadvantages in each category of materials and the future prospects of hydrogen storage.

장주기/대용량 수소저장을 위한 액체/고체기반 Slush 수소의 저장 비용 분석 (An Economic Analysis on Slush Hydrogen Containing Liquid and Solid Phase for Long-Term and Large-Scale Storage)

  • 박성호;이창형;류주열;황성현
    • 한국수소및신에너지학회논문집
    • /
    • 제33권3호
    • /
    • pp.247-254
    • /
    • 2022
  • Slush hydrogen containing liquid and solid hydrogen is expected to achieve zero boil-off by suppressing boil-off gas because heat of fusion for solid absorbe the heat ingress from atmosphere. In this paper, quantitative analysis on storage cost considering specific energy consumption between 1,000 m3 class liquid hydrogen storage system with re-liquefaction and slush hydrogen storage system during equivalent zero boil off period. Even though approximately 50% of total storage capacity should be converted into solid phase during the initial cargo bunkering, total energy consumption to convert into slush hydrogen is relatively 25% less than re-liquefaction energy for boil off hydrogen during zero boil off period. That's because energy consumption of slush phase change take up only 1.8% of liquefaction energy. moreover, annual revenue requirement including CAPEX, OPEX and electric cost for slush hydrogen storage could be more reduced approximately 32.5% than those of liquid hydrogen storage and specific energy storage cost ($/kg-H2) could also be lowered by about 41.7% compared with liquid hydrogen storage.

고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가 (Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics)

  • 박진우;박형범
    • Composites Research
    • /
    • 제37권1호
    • /
    • pp.32-39
    • /
    • 2024
  • 고체수소저장은 수소 기반 경제 발전과 에너지 저장 기술 혁신의 핵심 주제로 부각되고 있다. 이러한 저장 방식은 압축 및 액화수소 저장 등 기존 방식에 비해 안전성과 저장 및 운용 효율성 측면에서 우수한 특성을 보여주고 있다. 본 연구에서는 다양한 구조적 설계 요소 별로 나노튜브 표면에서의 고체수소저장 성능을 평가하고자 한다. 본 연구는 나노튜브의 저장 메커니즘을 밝히고자 분자 역학 시뮬레이션(MD)을 도입하여 수행되었다. 본 연구의 시뮬레이션에는 다양한 직경, 다중벽 구조(MWNT), 단일벽 구조(SWNT)의 탄소나노튜브(CNT) 및 붕소-질소 나노튜브(BNNT)가 도입되어 진행되었다. 방사형 밀도 함수(RDF)를 통해 다양한 조건에서 수소의 저장 및 효과적인 방출을 분석한 결과, 반경 감소와 이중벽 구조가 고체 수소 저장을 높이는 데 기여하는 것으로 나타났다. 또한, 붕소-질소 나노튜브의 수소 저장 용량은 탄소 나노튜브에 비해 낮게 측정되었지만, 유효 수소 저장 측면에서는 탄소 나노튜브를 훨씬 능가하는 것으로 나타났다.

금속수소화물 기반 수소저장시스템의 열관리 인자 조사 (Investigation of Thermal Management Parameters of Metal Hydride Based Hydrogen Storage System)

  • 박주식;김종원;배기광;정성욱;강경수
    • 한국수소및신에너지학회논문집
    • /
    • 제29권3호
    • /
    • pp.251-259
    • /
    • 2018
  • Metal hydride based hydrogen storage under moderate temperature and pressure gives the safety advantage over the gas and liquid storage methods. Still solid-state hydrogen storage including metal hydride is below the DOE target level for automotive applications, but it can be adapted to stationary or miliary application reasonably. In order to develop a modular solid state hydrogen storage system that can be applied to a distributed power supply system composed of renewable energy - water electrolysis - fuel cell, the heat transfer and hydrogen storage characteristics of the metal hydride necessary for the module system design were investigated using AB5 type metal hydride, LCN2 ($La_{0.9}Ce_{0.1}Ni_5$). The planetary high energy mill (PHEM) treatment of LCN2 confirmed the initial hydrogen storage activation and hydrogen storage capacity through surface modification of LCN2 material. Expanded natural graphite (ENG) addition to LCN2, and compression molding at 500 atm improved the thermal conductivity of the solid hydrogen storage material.

나노구조물질을 이용한 고체수소저장 기술 동향 (Advances in the Technology of Solid State Hydrogen Storage Methods Using Novel Nanostructured Materials)

  • ;김근영;남기석
    • Korean Chemical Engineering Research
    • /
    • 제43권4호
    • /
    • pp.439-451
    • /
    • 2005
  • 수소저장기술은 수소경제를 달성하기 위해 개발해야할 핵심요소기술이다. 이 논문에서는 고체수소저장기술의 최신 개발 동향을 고찰하였다. 나노구조 탄소계 물질(nanostructured carbon materials), 유기금속구조물(metal organic framework, MOFs), 금속수소화물(metal hydrides), 클래스레이트수화물(clathrate hydrates), 금속착수소화물(complex chemical hydrides)과 같은 고체수소저장매체를 중점적으로 고찰하였다. 그 결과 지금까지 개발된 고체수소저장재료의 수소저장용량은 고체의 표면적에 비례하여 증가함을 알 수 있었다. 또한 수송용 탑재형 수소저장 응용을 목적으로 안전하면서도 가역적 고밀도 수소저장이 가능한 기능성 신 나노재료의 개발 방향을 제시하였다.

NaBH4를 이용한 암모니아 보란 수소 저장 소재 합성 공정 개발 (Development of Synthesis Process for Ammonia Borane using NaBH4 as the Hydrogen Storage Materials)

  • 최호윤;박성진;정성진;백종민;송한덕;김종수;이건종;김영래
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.475-481
    • /
    • 2014
  • Ammonia borane ($NH_3BH_3$), as a source material for energy generation and hydrogen storage, has attracted growing interest due to its high hydrogen content. We have investigated the synthesis of ammonia borane from sodium borohydride ($NaBH_4$) and ammonium chloride ($NH_4Cl$) utilizing a low-temperature process. From our results, we obtained a maximum synthetic yield of 98.2% of ammonia borane complex. The diammoniate diborane (DADB) was detected in about 5~10mol% with in the solid ammonia borane by solid-state $^{11}B$-NMR analysis. The synthesized solid ammonia borane products were studied to characterize hydrogen release upon thermal dehydrogenation.

장주기/대용량 저장을 위한 액체/고체(Slush) 수소 생산 장치의 해외기술 동향분석 (Technical Review on Liquid/Solid (Slush) Hydrogen Production Unit for Long-Term and Bulk storage)

  • 이창형;류주열;손근;박성호
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.565-572
    • /
    • 2021
  • Hydrogen is currently produced from natural gas reforming or industrial process of by-product over than 90%. Additionally, there are green hydrogens based on renewable energy generation, but the import of green hydrogen from other countries is being considered due to the output variability depending on the weather and climate. Due to low density of hydrogen, it is difficult to storage and import hydrogen of large capacity. For improving low density issue of hydrogen, the gaseous hydrogen is liquefied and stored in cryogenic tank. Density of hydrogen increase from 0.081 kg/m3 to 71 kg/m3 when gaseous hydrogen transfer to liquid hydrogen. Density of liquid hydrogen is higher about 800 times than gaseous. However, since density and boiling point of liquid hydrogen is too lower than liquefied natural gas approximately 1/6 and 90 K, to store liquid hydrogen for long-term is very difficult too. To overcome this weakness, this paper introduces storage method of hydrogen based on liquid/solid (slush) and facilities for producing slush hydrogen to improve low density issue of hydrogen. Slush hydrogen is higher density and heat capacity than liquid hydrogen, can be expected to improve these issues.

탄소나노튜브 기반의 고체수소저장시스템에 관한 전산해석 (Numerical Simulation of CNTs Based Solid State Hydrogen Storage System)

  • 김상곤;황보치형;유철희;남기석;임연호
    • Korean Chemical Engineering Research
    • /
    • 제49권5호
    • /
    • pp.644-651
    • /
    • 2011
  • 향후 도래할 수소경제에서 가장 유망한 기술 중에 하나인 고체수소저장 시스템들의 전체성능은 고체수소화물 내부의 열 및 물질전달 속도에 크게 영향을 받으며, 최적화된 시스템 설계를 위해서 이들에 대한 연구들이 선행되어야 한다. 본 연구에서는 Pt-CNTs 수소저장물질을 이용한 수소저장시스템에 대한 모델링 및 2차원 비정상상태 전산해석을 수행하였다. 기존 상용화된 CFD 소프트웨어를 이용하여 충전동안 발생하는 열 및 물질전달에 대한 현상들을 연구하였으며, 최적화된 수소저장시스템 설계는 고압에서 대류에 의한 냉각효과를 최대화하여 시스템 내부의 온도 상승과 충전시간 지연을 개선할 수 있음을 밝혀냈다. 아직까지 CNT 기반의 수소저장시스템에 대한 연구들이 보고되고 있지 않은 상황에서, 본 연구는 향후 CNT 기반의 고체수소저장시스템 최적 설계에 대한 방안들을 제시한다.

물의 전기분해에 의한 수소 제조기술과 경제성 분석 (Economic analysis of hydrogen production technology using water electrolysis)

  • 심규성;김창희;박기배
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.324-332
    • /
    • 2004
  • According to the rapid depletion of the fossil fuels, the electricity and hydrogen will gradually take charge of the future energy supply. Especially, in order to control the supply and demand of electricity, energy storage medium is necessary and this could be solved by the combination of water electrolysis and fuel cell. Although electricity can be generated from such alternative energies as hydropower, nuclear, solar, and wind-power resources, alternative energy storage medium is also required since regenerative energies, solar and wind-powers, are intermittent energy resources. In this regard, hydrogen production from water electrolysis was recognized as a superb method for electricity storage. In this work, the current development and economic status of alkaline, solid polymer, and high temperature electrolysis were reviewed, and then the practical use of water electrolysis technology were discussed.

컴팩션된 Ti-Mn계 합금의 수소저장 및 방출 특성 (Hydrogen Storage and Release Properties for Compacted Ti-Mn Alloy)

  • 김종석;한원비;조현석;정문선;정성욱;조원철;강경수;김창희;배기광;김종원;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.9-16
    • /
    • 2017
  • Hydrogen forms metal hydrides with some metals and alloys leading to solid-state storage under moderate temperature and pressure that gives them the safety advantage over the gas and liquid storage methods. However, it has disadvantages of slow hydrogen adsorption-desorption time and low thermal conductivity. To improve characteristics of metal hydrides, it is important that activation and thermal conductivity of metal hydrides are improved. In this study, we have been investigated hydrogen storage properties of Hydralloy C among Ti-Mn alloys. Also, the characteristics of activation and thermal conductivity of Hydralloy C were enhanced to improve kinetics of hydrogen adsorption-desorption. As physical activation method, PHEM (planetary high energy mill) was performed in Ar or $H_2$ atmosphere. Hydralloy C was also activated by $TiCl_3$ catalyst. To improve thermal conductivity, various types of ENG (expanded natural graphite) were used. The prepared samples were compacted at pressure of 500 bar. As a result, the activation properties of $H_2$ PHEM treated Hydralloy C was better than the other activation methods. Also, the amounts of hydrogen storage showed up to 1.6 wt%. When flake type ENG was added to Hydralloy C, thermal conductivity and hydrogen storage properties were improved.