Review : Hydrogen Storage in Solid State

고체상 수소저장기술 동향

  • 이준웅 (한국과학기술정보연구원 Reseat 사업팀)
  • Received : 2010.09.10
  • Accepted : 2010.11.19
  • Published : 2010.12.05

Abstract

Hydrogen is the most abundant element in the universe. Although hydrogen can produce three times more energy than gasoline and seven times than coal, the most challenging problem in utilizing hydrogen as energy carrier is its storage problem. In contrast to the liquid hydrocarbon, hydrogen can not be stored or transported easily and safely because of its extremely low boiling point(21K). Recently scientists have made a tremendous achievement in storing hydrogen capacity in solid state materials such as carbon based and metal organic frameworks materials as well as metal hydrides. In this review the author reviewed the status of the hydrogen storage technologies in solid state, the advantages and disadvantages in each category of materials and the future prospects of hydrogen storage.

Keywords

References

  1. Schlapbach, I. and A. Zuttel, Nature, 414, 353, 2001. https://doi.org/10.1038/35104634
  2. A. Zuttel, Mater. Today, 6, 24, 2003.
  3. Satyapal, S., et al., Catal. Today, 120, 246, 2007. https://doi.org/10.1016/j.cattod.2006.09.022
  4. Summary of Old(2003) and New(2009) DOE Hydrogen Storage Targets, http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf.
  5. Yang, J., et al., Chem. Soc. Rev., 39, 656, 2010. https://doi.org/10.1039/b802882f
  6. Reilly, J. J. and Skeith, S. L., Inorg. Chem. 7, 2254, 1968. https://doi.org/10.1021/ic50069a016
  7. Vajo, J. J. and Skeith, S. L., J. Phy. Chem. B, 109, 3719, 2005. https://doi.org/10.1021/jp040769o
  8. Wagemans, R. W. P. et al., J. Am. Chem. Soc., 127, 16675, 2005. https://doi.org/10.1021/ja054569h
  9. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864, 1964. https://doi.org/10.1103/PhysRev.136.B864
  10. Wolverton, C. et al., J. Phys., Condens. Matter., 20, 064228, 2008. https://doi.org/10.1088/0953-8984/20/6/064228
  11. Siegel, D. J. et al., Phys. Rev. B : Condes. Matter Mater. Phys., 76, 134102, 2007. https://doi.org/10.1103/PhysRevB.76.134102
  12. Sun, Q. et al., J. Am. Chem. Soc., 128, 9741, 2006. https://doi.org/10.1021/ja058330c
  13. Akbarzadeh, A. R. et al., Adv. Mater., 19, 3233, 2007. https://doi.org/10.1002/adma.200700843
  14. Gutowska, A. et al., Angew. Chem. Int. Ed., 44. 3578, 2005. https://doi.org/10.1002/anie.200462602
  15. Aardahl, C., 'Product Seeding', http://www.hydrogen.energy.gov/pdfs/review08/stp_3_aardahl.pdf
  16. Sudik, A. J. et al., J. Phys. Chem. C, 111, 6568, 2007. https://doi.org/10.1021/jp0683465
  17. Yang, J. et al., Angew. Chem. Int. Ed., 47, 882, 2008. https://doi.org/10.1002/anie.200703756
  18. Li, L. J. and Yang, R. T., J. Am. Chem. Soc., 128, 8136, 2006. https://doi.org/10.1021/ja061681m
  19. Dillon, A. C. et al., Nature, 386, 377, 1997. https://doi.org/10.1038/386377a0
  20. Chambers, A. et al., J. Phys. Chem. B., 102(22), 4253, 1998. https://doi.org/10.1021/jp980114l
  21. Yurum, Y. et al., Int. J. Hydrogen Energy, 34, 3784, 2009. https://doi.org/10.1016/j.ijhydene.2009.03.001
  22. Lim, K. L., et al., Chem. Eng. Technol., 33, 213, 2010. https://doi.org/10.1002/ceat.200900376
  23. Schimmel, H. G. et al., Mater. Sci., B, 108, 124, 2004. https://doi.org/10.1016/j.mseb.2003.10.091
  24. Zubizarreta, L. and Arenillas, A., Int. J. Hydrogen Energy, 33, 4337, 2008. https://doi.org/10.1016/j.ijhydene.2008.05.056
  25. Kayiran, S. B. et al., J Phys Chem B, 108, 15211, 2004. https://doi.org/10.1021/jp048169c
  26. Shao, H.Y., et al., Nanotechnology 15, 269, 2004. https://doi.org/10.1088/0957-4484/15/3/006
  27. Gupta, B. K., et al., J. Alloys Compd. 381, 301, 2004. https://doi.org/10.1016/j.jallcom.2004.03.094
  28. Dentzer, T.-M. N., et al., Carbon, 42, 2744, 2004. https://doi.org/10.1016/j.carbon.2004.05.018
  29. Yildirim, T. and Ciraci. S., Phys. Rev. Lett. 94, 175501, 2005. https://doi.org/10.1103/PhysRevLett.94.175501
  30. Lee, J. W., et al., Appl. Phys. Lett. 88, 143126, 2006. https://doi.org/10.1063/1.2189587
  31. Zhao, X.B., et al., Phys. Chem. B, 109, 8880, 2005. https://doi.org/10.1021/jp050080z
  32. Zhao, X.B., et al., Phys. Chem. B, 110, 9947, 2006. https://doi.org/10.1021/jp060748p
  33. Phan, N. H. et al., Carbon, 44, 2569, 2006. https://doi.org/10.1016/j.carbon.2006.05.048
  34. Hynek, S. et al., Int. J. Hydrogen Energy, 22, 601, 1997. https://doi.org/10.1016/S0360-3199(96)00185-1
  35. Jin, H. et al., Catal. Today, 120, 399, 2007. https://doi.org/10.1016/j.cattod.2006.09.012
  36. Sharon, M. et al., Int. J. Hydrogen Energy, 32, 4238, 2007. https://doi.org/10.1016/j.ijhydene.2007.05.038
  37. Jorda-Beneyto, M. et al., Microporous Mesoporous Mater., 112, 235, 2008. https://doi.org/10.1016/j.micromeso.2007.09.034
  38. Shindo, K. et al., J. Aoolys Compd., 359, 267, 2003. https://doi.org/10.1016/S0925-8388(03)00201-9
  39. Takagi, H. et al., Chem. Lett., 33, 1220, 2004. https://doi.org/10.1246/cl.2004.1220
  40. Liu, C., et al., Science, 286, 1127, 1999. https://doi.org/10.1126/science.286.5442.1127
  41. Ye. Y., et al., Appl. Phys. Lett. 74, 2307, 1999. https://doi.org/10.1063/1.123833
  42. Hydrogen Production and Storage : R&D Priorities and Gaps, International Energy Agency, Paris 2006, http://www.iea.org/Textbase/papers/2006/hydrogen.pdf
  43. Hou, P. X., et al., Carbon, 41, 2471, 2003. https://doi.org/10.1016/S0008-6223(03)00271-9
  44. Tibbetts, G. G., et al., Carbon, 39, 2291, 2001. https://doi.org/10.1016/S0008-6223(01)00051-3
  45. Ye, X., et al., Carbon, 45, 315, 2007. https://doi.org/10.1016/j.carbon.2006.09.026
  46. Bhatia, S. K., and Myers, A. L., Langmuir, 22, 1688, 2006. https://doi.org/10.1021/la0523816
  47. Browning, D. J. et al., Nano Lett., 2(3), 201, 2002. https://doi.org/10.1021/nl015576g
  48. Kim, B. J. and Park, S. J., J. Colloid Interface Sci. 315(2), 791, 2007. https://doi.org/10.1016/j.jcis.2007.07.013
  49. Kim, B. J., et al., Int. J. Hydrogen Energy, 33, 4112, 2008. https://doi.org/10.1016/j.ijhydene.2008.05.077
  50. Gupta, B. K. and Srivastava, O. N., Int. J. Hydrogen Energy, 33, 2975, 2008. https://doi.org/10.1016/j.ijhydene.2008.03.062
  51. T. Heine, et al., SPIE, 2007, http://spie.org/x13545.xml?ArticleID=x13545
  52. Elias, D. C. et al., Science, 323, 610, 2009. https://doi.org/10.1126/science.1167130
  53. Graetz, J., Chem. Soc. Rev., 38, 73, 2009. https://doi.org/10.1039/b718842k
  54. Sandrock, G., J. Alloys Compd., 293, 877, 1999. https://doi.org/10.1016/S0925-8388(99)00384-9
  55. Srinivasan, S. S. et al., J. Alloys Compd., 377, 283, 2004. https://doi.org/10.1016/j.jallcom.2004.01.044
  56. Chaudhuri, S. et al., J. Am. Chem. Soc., 128, 11404, 2006. https://doi.org/10.1021/ja060437s
  57. Orimo, S. et al., Chem. Rev., 107, 4111, 2007. https://doi.org/10.1021/cr0501846
  58. Matsunaga, T. et al., Renewable Energy, 33, 193, 2008. https://doi.org/10.1016/j.renene.2007.05.004
  59. Ronnebro E. and Majzoub, E. H., J. Phys. Chem. B, 111, 12045, 2007. https://doi.org/10.1021/jp0764541
  60. Nakamori, Y. et al., Mater. Trans., 47, 1898, 2006. https://doi.org/10.2320/matertrans.47.1898
  61. Chen, P. et al., Nature, 420, 303, 2002.
  62. Luo W. and Sickafoose, S., J. Alloys Compd., 407, 274, 2006. https://doi.org/10.1016/j.jallcom.2005.06.046
  63. Graetz, J. et al., Phys. Rev. B, 71, 184115, 2005. https://doi.org/10.1103/PhysRevB.71.184115
  64. Ronnebro E. et al., J. Phys. Chem. B, 110, 25686, 2006. https://doi.org/10.1021/jp064122a
  65. Brinks, H. W. et al., J. Phys. Chem. C, 112, 5658, 2008. https://doi.org/10.1021/jp7100754
  66. Bogdanovıc, B. et al., Alloys Compd., 302, 36, 2000. https://doi.org/10.1016/S0925-8388(99)00663-5
  67. Chater, P. A. et al., Chem. Commun., 2439, 2006.
  68. Vajo, J. J. et al., J. Phys. Chem. B, 108, 13977, 2004. https://doi.org/10.1021/jp040060h
  69. Vajo J. J. and Olson, G. L., Scr. Mater., 56, 829, 2007. https://doi.org/10.1016/j.scriptamat.2007.01.002
  70. Alapati, S. V. et al., Phys. Chem. Chem. Phys., 9, 1438, 2007. https://doi.org/10.1039/b617927d
  71. Matus, M. H. et al., J. Phys. Chem.. A, 111, 4411, 2007. https://doi.org/10.1021/jp070931y
  72. Stephens, F. H. et al., Dalton Trans., 2613, 2007.
  73. Langmi H. W. and McGrady, G. S., Coord. Chem. Rev., 251, 925, 2007. https://doi.org/10.1016/j.ccr.2006.09.009
  74. Sandrock, G. et al., Appl. Phys. A, 80, 687, 2005. https://doi.org/10.1007/s00339-004-3105-0
  75. Graetz, J. et al., J. Alloys Compd., 446, 271, 2007. https://doi.org/10.1016/j.jallcom.2006.11.205
  76. Graetz J. and Reilly, J. J., J. Alloys Compd., 424, 262, 2006. https://doi.org/10.1016/j.jallcom.2005.11.086
  77. Graetz J. and Reilly, J. J., J. Phys. Chem. B, 109, 22181, 2005. https://doi.org/10.1021/jp0546960
  78. Konovalov, A. K. and Bulychev, B. M., Inorg. Chem., 34, 172, 1995. https://doi.org/10.1021/ic00105a029
  79. Graetz, J. et al., Phys. Rev. B, 74, 214114, 2006. https://doi.org/10.1103/PhysRevB.74.214114
  80. Zidan, R. et al., Chem. Commun., 3717, 2009.
  81. Lochan, R. C. and Head-Gordon, M., Phys. Chem. Chem. Phys., 8, 1357, 2006. https://doi.org/10.1039/b515409j
  82. Duren, T. and Snurr, R. Q., J. Phys. Chem. B, 108, 15703, 2004. https://doi.org/10.1021/jp0477856
  83. Dinca, M. et al., Angew. Chem., Int. Ed., 46, 1419, 2007. https://doi.org/10.1002/anie.200604362
  84. Dinca, M. et al., J. Am. Chem. Soc., 129, 11172, 2007. https://doi.org/10.1021/ja072871f
  85. Zhou, W. et al., J. Phys. Chem. C, 111, 16131, 2007. https://doi.org/10.1021/jp074889i
  86. Zhai, Q.-G., et al., Cryst. Growth Des., 7, 2332, 2007. https://doi.org/10.1021/cg070593q
  87. Choi, H. J., et al., J. Am. Chem. Soc., 130, 7848, 2008. https://doi.org/10.1021/ja8024092
  88. Rosi, N. L. et al., Science, 300, 1127, 2003. https://doi.org/10.1126/science.1083440
  89. Rowsell, J. L. C. et al., J. Am. Chem. Soc., 126, 5666, 2004. https://doi.org/10.1021/ja049408c
  90. Panella, B. et, al., Adv. Funct. Mater., 16, 520, 2006. https://doi.org/10.1002/adfm.200500561
  91. Murray, L. J. et al., Chem. Soc. Rev., 38, 1294, 2009. https://doi.org/10.1039/b802256a
  92. Kaye, S. S. et al., J. Am. Chem. Soc., 129, 14176, 2007. https://doi.org/10.1021/ja076877g
  93. Wong-Foy, A. G. A. et al., J. Am. Chem. Soc., 128, 3494, 2006. https://doi.org/10.1021/ja058213h
  94. Furukawa, H. et al., J. Mater. Chem., 17, 3197, 2007. https://doi.org/10.1039/b703608f
  95. Dinca, M. et al., J. Am. Chem. Soc., 128, 16876, 2006. https://doi.org/10.1021/ja0656853
  96. Chen, B. et al., J. Am. Chem. Soc., 130, 6411, 2008. https://doi.org/10.1021/ja710144k
  97. Bordiga, S. et al., Phys. Chem. Chem. Phys., 9, 2676, 2007. https://doi.org/10.1039/b703643d
  98. Latroche, M. et al., Angew. Chem., Int. Ed., 45, 8227, 2006. https://doi.org/10.1002/anie.200600105
  99. Lin, X. et al., Angew. Chem., Int. Ed., 45, 7358, 2006. https://doi.org/10.1002/anie.200601991
  100. Dinca, M. et al., J. Am. Chem. Soc., 128, 8904, 2006. https://doi.org/10.1021/ja061716i
  101. Nouar, F. et al., J. Am. Chem. Soc., 130, 1833, 2008. https://doi.org/10.1021/ja710123s
  102. Kaye, S. S. and Long, J. R., J. Am. Chem. Soc., 127, 6506, 2005. https://doi.org/10.1021/ja051168t
  103. Han, S. S. et al., J. Am. Chem. Soc., 130, 11580, 2008. https://doi.org/10.1021/ja803247y
  104. Klontzas, E. et al., J. Phys. Chem. C, 112, 9095, 2008. https://doi.org/10.1021/jp711326g