• 제목/요약/키워드: Solid dispersions

검색결과 69건 처리시간 0.023초

의약품의 용출에 관한 연구(제 16보)-고분자 고체분산체로부터 인도메타신의 지속 방출- (Studies on Dissolution Rate of Drugs (XVI)-Sustained Release of Indomethacin from Polymer Solid Dispersions)

  • 송라미;김수억;서성훈
    • Journal of Pharmaceutical Investigation
    • /
    • 제19권2호
    • /
    • pp.63-69
    • /
    • 1989
  • Dissolution characteristics of indomethacin (IMC) from hydrophobic polymer solid dispersions were investigated. IMC-polyvinyl chloride (PVC) and IMC-ethylcellulose (EC) solid dispersions were prepared. The dissolution patterns of pure IMC, IMC-PVC and IMC-EC solid dispersions prepared at various ratios (1:1, 1:3, 1:5, 1:9 and 1:19 w/w), and those of corresponding physical mixtures were compared. It was found that the dissolution rates of IMC from solid dispersions with PVC or EC decreased in the order of 1:1>1:3>1:5>1:9>1:19 as the drug to polymer ratios decreased. Also the dissolution rates of IMC from EC solid dispersions increased according to flow rate, but PVC solid dispersions were not affected significantly. After all, PVC and EC matrices could be applied in sustained-release preparation of IMC.

  • PDF

다양한 고체분산체 제조방법으로 제조한 실로도신 함유 고체분산체의 비교 및 특성분석 (Comparison and Characterization of Silodosin-loaded Solid Dispersions Prepared by Various Solid Dispersion Preparation Methods)

  • 이수만;송다영;김경수
    • 한국분말재료학회지
    • /
    • 제31권3호
    • /
    • pp.263-271
    • /
    • 2024
  • This study focused on improving the solubility of silodosin, a drug poorly soluble in water, by utilizing solid dispersions. Three types of dispersions were examined and compared against the drug powder: surface-attached (SA), solvent-wetted (SW), and solvent-evaporated (SE). Polyvinyl alcohol (PVA) was identified as the most effective polymer in enhancing solubility. These dispersions were prepared using spray-drying techniques with silodosin and PVA as the polymer, employing solvents such as water, ethanol, and a water-acetone mix. The physicochemical properties and solubility of the dispersions were evaluated. The surface-attached dispersions featured the polymer on a crystalline drug surface, the solvent-wetted dispersions had the amorphous drug on the polymer, and the solvent-evaporated dispersions produced nearly round particles with both components amorphous. Testing revealed that the order of improved solubility was: solvent-evaporated, solvent-wetted, and surface-attached. The results demonstrated that the preparation method of the solid dispersions significantly impacted their physicochemical properties and solubility enhancement.

고체분산체로부터 비페닐디메칠디카르복실레이트의 용출 및 투과 증전 (Enhanced Dissolution and Permeation of Biphenyl Dimethyl Dicarboxylate Using Solid Dispersions)

  • 문지현;전인구
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권3호
    • /
    • pp.227-234
    • /
    • 1999
  • Solid dispersions were prepared to increase the dissolution rate of biphenyl dimethyl dicarboxylate (DDB) using water-soluble carriers such as povidone, copolyvidone, $2-hydroxypropyl-{\beta}-cyclodextrin (HPCD)$, sodium salicylate or sodium benzoate by solvent evaporation method. Solid dispersions were characterized by infrared spectrometry, differential scanning calorimetry (DSC) and powder X-ray diffractometry, dissolution and permeation studies. DDB tablets (7.5 mg) were prepared by compressing the powder mixtures composed of solid dispersions, lactose, com starch, crospovidone and magnesium stearate using a single-punch press. DDB capsules (7.5 mg) were also prepared by filling the mixtures in empty hard gelatin capsules (size No.1). From the DSC and powder x-ray diffractometric studies, it was found that DDB was amorphous in the HPCD or copolyvidone solid dispersions. Dissolution rates after 10 min of DDB alone and solid dispersions (1 : 10) in sodium benzoate, sodium salicylate and copolyvidone were 11.8, 23.5, 22.8 and 82.5%, respectively. Dissolution rates of DDB after 30 min from 1 : 10 and 1 : 20 copolyvidone solid dispersions were 80.5 and 95.0%, respectively. For the DDB tablets prepared using solid dispersions (1 : 20), the initial dissolution rate was dependent on carrier material, and was ranked in order, $Kollidon\;30\;{\ll}$ copolyvidone < HPCD. For the HPCD solid dispersion tablets, dissolution rate reached 97.4% after 15 min, but thereafter slowly decreased to 80.7% after 2 hr due to the precipitation of DDB. However, in the case of copolyvidone solid dispersion tablets, dissolution increased linearly and reached 93.4% after 2 hr. Reducing the volume of test medium from 900 to 300 ml markedly decreased the dissolution rate of the tablets containing 1 : 20 HPCD solid dispersions and 1 : 10 copolyvidone solid dispersion. For 1 : 20 copolyvidone solid dispersion tablets, there was no significant change in dissolution rate up to 1 hr with different volumes of test medium. Preparation of the copolyvidone solid dispersion (1 : 20) in capsules markedly delayed the dissolution (31.2 % after 2hr) due to the limited diffusion within capsules. The permeation rate $(13.4\;g/cm^2\;after\;8\;hr)$ of DDB through rabbit duodenal mucosa from copolyvidone solid dispersion (1 : 10) was markedly enhanced, when compared with drug alone or physical mixtures. From overall findings, DDB formulations containing copolyvidone solid dispersions (1 : 20) could be used to remarkably improve the dissolution rate in dosage form of powders and tablets.

  • PDF

가용화 조성물과 난용성 약물군을 함유하는 고체분산체의 용출양상 (Dissolution Profiles of Solid Dispersions Containing Poorly Water-Soluble Drugs and Solubilizing Compositions)

  • 김태완;최춘영;;권경애;이범진
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권3호
    • /
    • pp.191-197
    • /
    • 2002
  • Polymer based physical mixtures or solid dispersions containing solubilizing compositions[OA, tween80 and SLS] were prepared using a spray-dryer. Lovastatin(LOS), simvastatin(SIMS), aceclofenac(AFC) and cisapride(CSP) were selected as poorly water-soluble drugs. Dextrin, poly(vinylalcohol) (PVA), poly(vinylpyrrolidone)(PVP) and polyethylene glycol(PEG) were chosen as solubilizing carriers for solid dispersions. The solid dispersions containing solubilizing compositions without drug were prepared without using organic solvents or tedious changes of formulation compositions. This system could be used to quickly screen the dissolution profiles of poorly water-soluble drugs by simply mixing with drugs thereafter. In case of solid dispersion containing drug, organic solvent systems could be used to solubilize model drugs. The dissolution rates of the drugs were higher when mixed with drug and solid dispersions containing solubilizing compositions. However, solid dispersions of LOS, AFC, and CSP simultaneously containing drug and solubilizing compositions in organic solvent systems were more useful than physical mixtures of drug and solid dispersions without drug except SIMS. Based on solubilizing capability of polymer based physical mixtures in gelatin hard capsules, optimal solid dispersion system of poorly water-soluble drugs could be formulated. However, it should be noted that dissolution rate of poorly water-soluble drugs were highly dependent on drug properties, solubilizing compositions and polymeric carriers.

Solubilization of poorly water-soluble drugs using solid dispersions

  • Kim, Tae-Wan;Choi, Choon-Young;Cao, Qing-Ri;Lee, Beom-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.412.2-413
    • /
    • 2002
  • Purpose. To prepare polymer based physical mixtures or solid dispersions containing solubilizing compositions using a spray-dryer. Methods. Lovastatin.simvastatin.aceclofenac and cisapride were selected as poorly water-soluble drugs. Dextrin. poly(vinylalcohol). poly(vinylpyrrolidone)and polyethylene glycol were chosen as solubilizing carriers for solid dispersions. The solid dispersions containing solubilizing compositions without drug were prepared without using organic solvents or tedious changes of formulation compositions. (omitted)

  • PDF

Dissolution Characteristics of Biphenyl Dimethyl Dicarboxylate from Solid Dispersions with Copolyvidone

  • Moon, Jee-Hyun;Chun, In-Koo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.118-118
    • /
    • 1997
  • Solid dispersions were used to increase the dissolution rate of biphenyl dimethyl dicarboxylate (DDB) in water, with the ultimate goal of optimizing its bioavailability when incoporated into pharmaceuticals. Carriers used were Kollidon 30, Kollidon VA 64, 2-hydroxypropyl-${\beta}$-cyclodextrin (HPCD), sodium salicylate or sodium benzoate. DDB solid dispersions were prepared at drug to carrier proportions ranging from 1 : 5 to 1 : 20 (w/w) by solvent evaporation method. DDB tablets (7.5 mg) were prepared by compressing the powder mixture composed of solid dispersions, lactose, corn starch, crospovidone and magnesium stearate using a single-punch press. DDB capsules (7.5 mg) were prepared by filing the mixture into empty hard gelatin capsules (size #1). Dissolution studies of DDB from powdered solid dispersions, tablets and capsules were performed in 900 $m\ell$ of water at 100 rpm and 37$^{\circ}C$ by the paddle method. The dissolved amount was assayed by HPLC and expressed as the mean(%)of three determinations.

  • PDF

고체분산체를 이용한 약물의 생체이용율 향상을 위한 전략 (Solid Dispersion as a Strategy to Improve Drug Bioavailability)

  • 박준형;전명관;조훈;최후균
    • KSBB Journal
    • /
    • 제26권4호
    • /
    • pp.283-292
    • /
    • 2011
  • Solid dispersion is one of well-established pharmaceutical techniques to improve the dissolution and consequent bioavailability of poorly water soluble drugs. It is defined as a dispersion of drug in an inert carrier matrix. Solid dispersions can be classified into three generations according to the carrier used in the system. First and second generations consist of crystalline and amorphous substances, respectively. Third generation carriers are surfactant, mixture of polymer and surfactants, and mixture of polymers. Solid dispersions can be generallyprepared by melting method and solvent method. While melting method requires high temperature to melt carrier and dissolve drug, solvent method utilizes solvent to dissolve the components. The improvement in dissolution through solid dispersions is attributed to reduction in drug particle size, improvement in wettability, and/or formation of amorphous state. The primary characteristics of solid dispersions, the presenceof drug in amorphous state, could be determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and fourier-transformed infrared spectroscopy (FTIR). In spite of the significant improvement in dissolution by solid dispersion technique, some drawbacks have limited the commercial application of solid dispersions. Thus, further studies should be conducted in a direction to improve the congeniality to commercialization.

Preparation and Characterization of Solid Dispersions of Itraconazole by using Aerosol Solvent Extraction System for Improvement in Drug Solubility and Bioavailability

  • Lee, Si-Beum;Nam, Kyung-Wan;Kim, Min-Soo;Jun, Seoung-Wook;Park, Jeong-Sook;Woo, Jong-Soo;Hwang, Sung-Joo
    • Archives of Pharmacal Research
    • /
    • 제28권7호
    • /
    • pp.866-874
    • /
    • 2005
  • The objective of this study was to elucidate the feasibility to improve the solubility and bioavailability of poorly water-soluble itraconazole via solid dispersions by using supercritical fluid (SCF). Solid dispersions of itraconazole with hydrophilic polymer, HPMC 2910, were prepared by the aerosol solvent extraction system (ASES) under different process conditions of temperature/pressure. The particle size of solid dispersions ranged from 100 to 500 nm. The equilibrium solubility increased with decrease (15 to 10 MPa) in pressure and increase (40 to $60^{\circ}C$) in temperature. The solid dispersions prepared at $60^{\circ}C$/15 MPa showed a slight increase in equilibrium solubility (approximately 27-fold increase) when compared to pure itraconazole, while those prepared at $60^{\circ}C$/10MPa showed approximately 610-fold increase and no endothermic peaks corresponding to pure itraconazole were observed, indicating that itraconazole might be molecularly dispersed in HPMC 2910 in the amorphous form. The amorphous state of itraconazole was confirmed by DSC/XRD data. The pharmacokinetic parameters of the ASES-processed solid dispersions, such as $T_{max},\;C_{max},\;and\;AUC_{0-24h}$ were almost similar to $Sporanox_{\circledR}$ capsule which shows high bioavailability. Hence, it was concluded that the ASES process could be a promising technique to reduce particle size and/or prepare amorphous solid dispersion of drugs in order to improve the solubility and bioavailability of poorly water-soluble drugs.

난용성약물 Biphenyl Dimethyl Dicarboxylate의 제제화를 통한 용출증대 (Enhancement of Dissolution Properties through Formulations of Insoluble Drug Biphenyl Dimethyl Dicarboxylate)

  • 이순아;송경;박은진;손동환;고건일;김재백
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권1호
    • /
    • pp.23-28
    • /
    • 1996
  • The dissolution characteristics of DDB were markedly enhanced by preparing solid dispersions of drug with polyethylene glycol 6000. Solid dispersions of various weight fraction were formed by a melting method. And various tablets$(A{\sim}E)$ were prepared from these solid dispersions with excipients (lactose, com starch, Avicel and PVP) by wet granulation method. There were no significant differences in dissolution rates between physical mixture and DDB alone. But dissolution rates of solid dispersions were $1.4{\sim}2.0$ times greater than that of DDB alone and $1.2{\sim}1.8$ times greater than those of a commercial tablet.

  • PDF

히드록시프로필셀룰로오스/카르보폴 고체분산체의 점막부착성과 팽윤 및 약물방출특성 (Mucoadhesion, Swelling and Drug Release Characteristics of Hydroxypropylcellulose/Carbopol Solid Dispersions)

  • 김상헌;양수근;신동선;이민석;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제24권3호
    • /
    • pp.155-165
    • /
    • 1994
  • Some mucoadhesive polymers such as hydroxypropylcelluose (HPC) and carbopol-934 (CP) have been employed for the preparation of mucoadhesive polymeric systems, and their physical properties including mucoadhesion, swelling, and drug release were evaluated. A new simple experimental technique that can quantitatively measure the bioadhesive properties of various polymeric systems has been developed by the methods of detachment force test. As the polymeric systems, the discs of freeze-dried HPC/CP solid dispersions were prepared. The mucosa used in these tests were upper, middle, and lower parts of small intestine of male rats weighing $300{\sim}350\;g$. Detachment forces were increased as the mole fraction of CP increased in discs of HPC/CP solid dispersions. In the points of intestinal site dependence of mucoadhesion, the solid dispersions revealed non-specific mucoadhesion to the intestine. Swelling and drug release characteristics of mucoadhesive polymeric systems were studied extensively to find out the feasibility for the oral controlled delivery systems. Swelling ratio, expressed as the final height/initial height, has been determined in various pH buffer solutions. Hydrochlorothiazide (HCT) was employed as a model drug for release study. Apparent swelling and drug release rate constants, $K_s$ and $K_r$ respectively, were obtained from the square-root time plot of either swelling ratio or released amount of drug, particularly for the time periods before reaching the equilibrium. As a result, the swelling ratio of HPC/CP solid dispersions was increased as the weight percentage of CP increased. Similarly, the release of HCT from the solid dispersions was dependent on pH changes and CP contents, resulted in the slower release of HCT with the increases of pH and CP contents.

  • PDF