DOI QR코드

DOI QR Code

Solid Dispersion as a Strategy to Improve Drug Bioavailability

고체분산체를 이용한 약물의 생체이용율 향상을 위한 전략

  • Received : 2011.07.26
  • Accepted : 2011.08.29
  • Published : 2011.08.30

Abstract

Solid dispersion is one of well-established pharmaceutical techniques to improve the dissolution and consequent bioavailability of poorly water soluble drugs. It is defined as a dispersion of drug in an inert carrier matrix. Solid dispersions can be classified into three generations according to the carrier used in the system. First and second generations consist of crystalline and amorphous substances, respectively. Third generation carriers are surfactant, mixture of polymer and surfactants, and mixture of polymers. Solid dispersions can be generallyprepared by melting method and solvent method. While melting method requires high temperature to melt carrier and dissolve drug, solvent method utilizes solvent to dissolve the components. The improvement in dissolution through solid dispersions is attributed to reduction in drug particle size, improvement in wettability, and/or formation of amorphous state. The primary characteristics of solid dispersions, the presenceof drug in amorphous state, could be determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and fourier-transformed infrared spectroscopy (FTIR). In spite of the significant improvement in dissolution by solid dispersion technique, some drawbacks have limited the commercial application of solid dispersions. Thus, further studies should be conducted in a direction to improve the congeniality to commercialization.

Keywords

References

  1. Fasano, A. (1998) Novel approaches in oral delivery of macromolecules. J. Pharm. Sci. 87: 1351-1356. https://doi.org/10.1021/js980076h
  2. Youn, Y. S., J. Y. Jung, S. H. Oh, S. D. Yoo, and K. C. Lee (2006) Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: Stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy. J. Control Rel. 114: 334-342. https://doi.org/10.1016/j.jconrel.2006.06.007
  3. Sugawara, M., S. Kadomura, X. He, Y. Takekuma, N. Kohri, and K. Miyazaki (2005) The use of an in vitro dissolution and absorption system to evaluate oral absorption of two weak bases in pH-independent controlled-release formulations. Eur. J. Pharm. Sci. 26: 1-8. https://doi.org/10.1016/j.ejps.2005.02.017
  4. Mayersohn, M. (2002) Modern Pharmaceutics. 4nd ed, pp. 23-66. Marcel Dekker, United states.
  5. Amidon, G. L., H. Lennernas, V. P. Shah, and J. R. Crison (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12: 413-420. https://doi.org/10.1023/A:1016212804288
  6. Pouton, C. W. (2006) Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29: 278-287. https://doi.org/10.1016/j.ejps.2006.04.016
  7. Lindenberg, M. (2004) Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 58: 265-278. https://doi.org/10.1016/j.ejpb.2004.03.001
  8. Hauss, D. J. (2007) Oral lipid-based formulations. Adv. Drug Del. Rev. 59: 667-676. https://doi.org/10.1016/j.addr.2007.05.006
  9. Peltonen, L. and J. Hirvonen (2010) Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol. 62: 1569-1579. https://doi.org/10.1111/j.2042-7158.2010.01022.x
  10. Liversidge, G. G. (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int. J. Pharm. 125: 91-97. https://doi.org/10.1016/0378-5173(95)00122-Y
  11. Yeo, S.-D., G.-B. Lim, P. G. Debendetti, and H. Bernstein (1993) Formation of microparticulate protein powder using a supercritical fluid antisolvent. Biotechnol. Bioeng. 41: 341-346. https://doi.org/10.1002/bit.260410308
  12. Jinno, J., N. Kamada, M. Miyake, K. Yamada, T. Mukai, M. Odomi, H. Toguchi, G. G. Liversidge, K. Higaki, and T. Kimura (2006) Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Rel. 111: 56-64. https://doi.org/10.1016/j.jconrel.2005.11.013
  13. Shafiq, S., F. Shakeel, S. Talegaonkar, F. J. Ahmad, R. K. Khar, and M. Ali (2007) Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm. 66: 227-243. https://doi.org/10.1016/j.ejpb.2006.10.014
  14. Nepal, P. R., H.-K. Han, and H.-K. Choi (2010) Preparation and in vitro-in vivo evaluation of $Witepsol^{\circledR}$ H35 based selfnanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10. Eur. J. Pharm. Sci. 39: 224-232. https://doi.org/10.1016/j.ejps.2009.12.004
  15. Tiwari, R. and K. Pathak (2011) Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm. 415: 232-243. https://doi.org/10.1016/j.ijpharm.2011.05.044
  16. Sekiguchi, K. and N. Obi (1961) Studies on absorption of eutectic mixture. I. a comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. 9: 866-872. https://doi.org/10.1248/cpb.9.866
  17. Chiou, W. L. and S. Riegelman (1971) Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 60: 1281-1302. https://doi.org/10.1002/jps.2600600902
  18. Corrigan, O. I. (1985) Mechanisms of dissolution of fast release solid dispersions. Drug Dev. Ind. Pharm. 11: 697-724. https://doi.org/10.3109/03639048509056896
  19. Yonemochi, E., S. Kitahara, S. Maeda, S. Yamamura, T. Oguchi, and K. Yamamoto (1999) Physicochemical properties of amorphous clarithromycin obtained by grinding and spray drying. Eur. J. Pharm. Sci. 7: 331-338. https://doi.org/10.1016/S0928-0987(98)00040-2
  20. Chow, A. H. L., C. K. Hsia, J. D. Gordon, J. W. M. Young, and E. I. Vargha-Butler (1995) Assessment of wettability and its relationship to the intrinsic dissolution rate of doped phenytoin crystals. Int. J. Pharm. 126: 21-28. https://doi.org/10.1016/0378-5173(95)04060-9
  21. Yonemochi, E., Y. Ueno, T. Ohmae, T. Oguchi, S.-i. Nakajima, and K. Yamamoto (1997) Evaluation of amorphous ursodeoxycholic acid by thermal methods. Pharm. Res. 14: 798-803. https://doi.org/10.1023/A:1012114825513
  22. Kim, E.-J., M.-K. Chun, J.-S. Jang, I.-H. Lee, K.-R. Lee, and H.-K. Choi (2006) Preparation of a solid dispersion of felodipine using a solvent wetting method. Eur. J. Pharm. Biopharm. 64: 200-205. https://doi.org/10.1016/j.ejpb.2006.04.001
  23. Joshi, H. N., R. W. Tejwani, M. Davidovich, V. P. Sahasrabudhe, M. Jemal, M. S. Bathala, S. A. Varia, and A. T. M. Serajuddin (2004) Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int. J. Pharm. 269: 251-258. https://doi.org/10.1016/j.ijpharm.2003.09.002
  24. Nepal, P. R., H. K. Han, and H. K. Choi (2010) Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation. Int. J. Pharm. 383: 147-153. https://doi.org/10.1016/j.ijpharm.2009.09.031
  25. Serajuddin, A. T. (1999) Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88: 1058-1066. https://doi.org/10.1021/js980403l
  26. Goldberg, A. H., M. Gibaldi, and J. L. Kanig (1966) Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures II: Experimental evaluation of a eutectic mixture: Urea-acetaminophen system. J. Pharm Sci. 55: 482-487. https://doi.org/10.1002/jps.2600550507
  27. Goldberg, A. H., M. Gibaldi, J. L. Kanig, and M. Mayersohn (1966) Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: Chloramphenicol-urea system. Journal of Pharmaceutical Sciences 55: 581-583 https://doi.org/10.1002/jps.2600550610
  28. Kanig, J. L. (1964) Properties of fused mannitol in compressed tablets. J. Pharm. Sci. 53: 188-192. https://doi.org/10.1002/jps.2600530217
  29. Levy, G. (1963) Effect of particle size on dissolution and gastrointestinal absorption rates of pharmaceuticals. Am. J. Pharm. 135: 78-92.
  30. Goldberg, A. H., M. Gibaldi, J. L. Kanig, and M. Mayersohn (1966) Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: Chloramphenicol-urea system. J. Pharm. Sci. 55: 581-583. https://doi.org/10.1002/jps.2600550610
  31. Chiou, W. L. and S. Riegelman (1969) Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J. Pharm. Sci. 58: 1505-1510. https://doi.org/10.1002/jps.2600581218
  32. Najib, N. M., M. Suleiman, and A. Malakh (1986) Characteristics of the in vitro release of ibuprofen from polyvinylpyrrolidone solid dispersions. Int. J. Pharm. 32: 229-236. https://doi.org/10.1016/0378-5173(86)90183-3
  33. Ford, J. L., A. F. Stewart, and J.-L. Dubois (1986) The properties of solid dispersions of indomethacin or phenylbutazone in polyethylene glycol. Int. J. Pharm. 28: 11-22. https://doi.org/10.1016/0378-5173(86)90142-0
  34. Ho, H.-O., H.-L. Su, T. Tsai, and M.-T. Sheu (1996) The preparation and characterization of solid dispersions on pellets using a fluidized-bed system. Int. J. Pharm. 139: 223-229. https://doi.org/10.1016/0378-5173(96)04594-2
  35. Simonelli, A. P., S. C. Mehta, and W. I. Higuchi (1969) Dissolution rates of high energy polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates. J. Pharm. Sci. 58: 538-549. https://doi.org/10.1002/jps.2600580503
  36. Taylor, L. S. and G. Zografi (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14: 1691-1698. https://doi.org/10.1023/A:1012167410376
  37. Leuner, C. and J. Dressman (2000) Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50: 47-60. https://doi.org/10.1016/S0939-6411(00)00076-X
  38. Konno, H., T. Handa, D. E. Alonzo, and L. S. Taylor (2008) Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur. J. Pharm. Biopharm. 70: 493-499. https://doi.org/10.1016/j.ejpb.2008.05.023
  39. Vasconcelos, T., B. Sarmento, and P. Costa (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Dis. Today 12: 1068-1075. https://doi.org/10.1016/j.drudis.2007.09.005
  40. van Drooge, D. J., W. L. J. Hinrichs, M. R. Visser, and H. W. Frijlink (2006) Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int. J. Pharm. 310: 220-229. https://doi.org/10.1016/j.ijpharm.2005.12.007
  41. Mura, P., M. T. Faucci, A. Manderioli, G. Bramanti, and P. Parrini (1999) Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersions. Drug Dev. Ind. Pharm. 25: 257-264. https://doi.org/10.1081/DDC-100102169
  42. Li, F.-Q., J.-H. Hu, J.-X. Deng, H. Su, S. Xu, and J.-Y. Liu (2006) In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int. J. Pharm. 324: 152-157. https://doi.org/10.1016/j.ijpharm.2006.06.006
  43. Karatas, A., N. Yuksel, and T. Baykara (2005) Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol. Farmaco 60: 777-782. https://doi.org/10.1016/j.farmac.2005.04.014
  44. Chauhan, B., S. Shimpi, and A. Paradkar (2005) Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur. J. Pharm. Sci. 26: 219-230. https://doi.org/10.1016/j.ejps.2005.06.005
  45. Yuksel, N., A. Karatas, Y. Ozkan, A. Savaser, S.A. Özkan, and T. Baykara (2003) Enhanced bioavailability of piroxicam using Gelucire 44/14 and Labrasol: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 56: 453-459. https://doi.org/10.1016/S0939-6411(03)00142-5
  46. Mura, P., J. R. Moyano, M. L. Gonzalez-Rodriguez, A. M. Rabasco- Alvarez, M. Cirri, and F. Maestrelli (2005) Characterization and dissolution properties of detoprofen in binary and ternary solid dispersions with polyethylene glycol and surfactants. Drug Dev. Ind. Pharm. 31: 425-434. https://doi.org/10.1080/03639040500214621
  47. Law, S. L., W. Y. Lo, F. M. Lin, and C. H. Chaing (1992) Dissolution and absorption of nifedipine in polyethylene glycol solid dispersion containing phosphatidylcholine. Int. J. Pharm. 84: 161-166. https://doi.org/10.1016/0378-5173(92)90056-8
  48. Hirasawa, N., S. Ishise, H. Miyata, and K. Danjo (2003) An attempt to stabilize nilvadipine solid dispersion by the use of ternary systems. Drug Dev. Ind. Pharm. 29: 997-1004. https://doi.org/10.1081/DDC-120025456
  49. Stoll, R. G., T. R. Bates, K. A. Nieforth, and J. Swarbrick (1969) Some physical factors affecting the enhanced blepharoptotic activity of orally administered reserpine-cholanic acid coprecipitates. J. Pharm. Sci. 58: 1457-1459. https://doi.org/10.1002/jps.2600581206
  50. Yamamura, S. and J. A. Rogers (1996) Characterization and dissolution behavior of nifedipine and phosphatidylcholine binary systems. Int. J. Pharm. 130: 65-73. https://doi.org/10.1016/0378-5173(95)04267-9
  51. Kennedy, M., J. Hu, P. Gao, L. Li, A. Ali-Reynolds, B. Chal, V. Gupta, C. Ma, N. Mahajan, A. Akrami, and S. Surapaneni (2008) Enhanced Bioavailability of a Poorly Soluble VR1 Antagonist Using an Amorphous Solid Dispersion Approach: A Case Study. Molecular Pharmaceutics 5: 981-993. https://doi.org/10.1021/mp800061r
  52. Simonelli, A. P., S. C. Metha, and W. I. Higuchi (1976) Dissolution rates of high energy sulfathiazide-povidone coprecipitates II: characterization of form of drug controlling its dissolution rate via solubility studies. J. Pharm. Sci. 65: 355-360. https://doi.org/10.1002/jps.2600650310
  53. Matsumoto, T. and G. Zografi (1999) Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm. Res. 16: 1722-1728. https://doi.org/10.1023/A:1018906132279
  54. Hasegawa, A., M. Taguchi, R. Suzuki, T. Miyata, H. Nakagawa, and I. Sugimoto (1988) Supersaturation mechanism of drugs from solid dispersions with enteric coating agents. Chem. Pharm. Bull. 36: 4941-4950. https://doi.org/10.1248/cpb.36.4941
  55. Suzuki, H. and H. Sunada (1998) Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Chem. Pharm. Bull. 46: 482-487. https://doi.org/10.1248/cpb.46.482
  56. Hasegawa, A., R. Kawamura, H. Nakagawa, and I. Sugimoto (1985) Dissolution mechanism of solid dispersions of nifedipine with enteric coating agents. J. Pharm. Sci. Technol. Jpn. 106: 586-592.
  57. Yamashita, K., T. Nakate, K. Okimoto, A. Ohike, Y. Tokunaga, R. Ibuki, K. Higaki, and T. Kimura (2003) Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int. J. Pharm. 267: 79-91. https://doi.org/10.1016/j.ijpharm.2003.07.010
  58. Tiwari, R., G. Tiwari, B. Srivastava, and A.K. Rai (2009) Solid dispersions: an overview to modify bioavailability of poorly water soluble drugs. Int. J. Pharm. Tech. Res. 1: 1388-1449.
  59. McGinity, J. W., P. Maincent, and H. Steinfink (1984) Crystallinity and dissolution rate of tolbutamide solid dispersions prepared by the melt method. J. Pharm. Sci. 73: 1441-1444. https://doi.org/10.1002/jps.2600731030
  60. Sekiguchi, K., N. Obi, and Y. Ueda (1964) Studies on absorption of eutectic mixtures. II. Absorption of fused conglomerates of chloramphenicol and urea in rabbits. Chem. Pharm. Bull. 12: 134-144. https://doi.org/10.1248/cpb.12.134
  61. Allen, L. V., R. S. Levinson, and D. De Martono (1978) Dissolution rates of hydrocortisone and prednisone utilizing sugar solid dispersion systems in tablet form. J. Pharm. Sci. 67: 979-981. https://doi.org/10.1002/jps.2600670729
  62. Yao, W.-W., T.-C. Bai, J.-P. Sun, C.-W. Zhu, J. Hu, and H.-L. Zhang (2005) Thermodynamic properties for the system of silybin and poly(ethylene glycol) 6000. Thermochim. Acta 437: 17-20. https://doi.org/10.1016/j.tca.2005.06.012
  63. Sheen, P.-C., A. R. Nanda, C. E. Rowlings, and N. P. Barker (2000) Water-Insoluble Drug Formulation. 1st ed, pp. 493-523. Interpharm Press, United states.
  64. Speiser, P. (1966) Galenische aspekte der arzneimittelwirkung. Pharm. Acta Helv. 41: 321-342.
  65. Huttenrauch, R. (1974) Spritzgiessverfahren zur herstellung peroraler retardpräperate. Pharmazie 29: 297-302.
  66. Verreck, G., A. Decorte, K. Heymans, J. Adriaensen, D. Liu, D. Tomasko, A. Arien, J. Peeters, G. Van den Mooter, and M. E. Brewster (2006) Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int. J. pharm. 327: 45-50. https://doi.org/10.1016/j.ijpharm.2006.07.024
  67. Verreck, G., A. Decorte, K. Heymans, J. Adriaensen, D. Liu, D. L. Tomasko, A. Arien, J. Peeters, P. Rombaut, G. Van den Mooter, and M. E. Brewster (2007) The effect of supercritical CO2 as a reversible plasticizer and foaming agent on the hot stage extrusion of itraconazole with EC 20 J. Supercrit. Fluids 40: 153-162. https://doi.org/10.1016/j.supflu.2006.05.005
  68. DiNunzio, J. C., C. Brough, D. A. Miller, R. O. Williams, and J. W. McGinity (2010) Fusion processing of itraconazole solid dispersions by $kinetisol^{\circledR}$ dispersing: A comparative study to hot melt extrusion. J. Pharm. Sci. 99: 1239-1253. https://doi.org/10.1002/jps.21893
  69. Tachibana, T. and A. Nakamura (1965) A methode for preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers: Dispersion of B-carotene by polyvinylpyrrolidone. Colloid Polym. Sci. 203: 130-133.
  70. Karavas, E., E. Georgarakis, and D. Bikiaris (2006) Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. Eur. J. Pharm. Biopharm. 64: 115-126. https://doi.org/10.1016/j.ejpb.2005.12.013
  71. Wang, X., A. Michoel, and G. Van den Mooter (2005) Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole. Int. J. Pharm. 303: 54-61. https://doi.org/10.1016/j.ijpharm.2005.07.002
  72. Desai, J., K. Alexander, and A. Riga (2006) Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int. J. Pharm. 308: 115-123. https://doi.org/10.1016/j.ijpharm.2005.10.034
  73. Ceballos, A., M. Cirri, F. Maestrelli, G. Corti, and P. Mura (2005) Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Il Farmaco 60: 913-918. https://doi.org/10.1016/j.farmac.2005.07.002
  74. Prabhu, S., M. Ortega, and C. Ma (2005) Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam. Int. J. Pharm. 301: 209-216. https://doi.org/10.1016/j.ijpharm.2005.05.032
  75. Van den Mooter, G., I. Weuts, T. De Ridder, and N. Blaton (2006) Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int. J. Pharm. 316: 1-6. https://doi.org/10.1016/j.ijpharm.2006.02.025
  76. Jung, J.-Y., S. D. Yoo, S.-H. Lee, K.-H. Kim, D.-S. Yoon, and K.-H. Lee (1999) Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int. J. Pharm. 187: 209-218. https://doi.org/10.1016/S0378-5173(99)00191-X
  77. Won, D. H. (2005) Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 301: 199-208. https://doi.org/10.1016/j.ijpharm.2005.05.017
  78. Dhirendra, K., S. Lewis, N. Udupa, and K. Atin (2009) Solid dispersions: a review. Pak. J. Pharm. Sci. 22: 234-246.
  79. Weuts, I., D. Kempen, G. Verreck, A. Decorte, K. Heymans, J. Peeters, M. Brewster, and G. V. d. Mooter (2005) Study of thephysicochemical properties and stability of solid dispersions of loperamide and PEG6000 prepared by spray drying. Eur. J. Pharm. Biopharm. 59: 119-126. https://doi.org/10.1016/j.ejpb.2004.05.011
  80. van Drooge, D.-J., W. L. J. Hinrichs, B. H. J. Dickhoff, M. N. A. Elli, M. R. Visser, G. S. Zijlstra, and H. W. Frijlink (2005) Spray freeze drying to produce a stable [Delta]9- tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation. Eur. J. Pharm. Sci. 26: 231-240. https://doi.org/10.1016/j.ejps.2005.06.007
  81. Park, Y.-J., D.-S. Ryu, D. X. Li, Q. Z. Quan, D. H. Oh, J. O. Kim, Y. G. Seo, Y.-I. Lee, C. S. Yong, J. S. Woo, and H.-G. Choi (2009) Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulphate. Arch. Pharm. Res. 32: 893-898. https://doi.org/10.1007/s12272-009-1611-5
  82. Park, Y.-J., D.-H. Oh, Y.-D. Yan, Y.-G. Seo, S.-N. Lee, H.-G. Choi, and C.-S. Yong (2010) Surface-attached solid dispersion. J. Pharm. Inv. 40: 103-112. https://doi.org/10.4333/KPS.2010.40.S.103
  83. Joe, J. H., W. M. Lee, Y.-J. Park, K. H. Joe, D. H. Oh, Y. G. Seo, J. S. Woo, C. S. Yong, and H.-G. Choi (2010) Effect of the solid-dispersion method on the solubility and crystalline property of tacrolimus. Int. J. Pharm. 395: 161-166. https://doi.org/10.1016/j.ijpharm.2010.05.023
  84. Kerc, J. and S. Srcic (1995) Thermal analysis of glassy pharmaceuticals. Thermochim. Acta 248: 81-95. https://doi.org/10.1016/0040-6031(94)01949-H
  85. Kreuter, J. (1999) Grundlagen der Arzneiformenlehre. pp. 262-274. Springer, Germany.
  86. Van den Mooter, G., M. Wuyts, N. Blaton, R. Busson, P. Grobet, P. Augustijns, and R. Kinget (2001) Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 12: 261-269. https://doi.org/10.1016/S0928-0987(00)00173-1
  87. Klug, H. P. and L. E. Alexander (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. 2nd ed, pp. 55-58. Wiley, New York.
  88. Karagiannidis, P. G., A. C. Stergiou, and G. P. Karayannidis (2008) Study of crystallinity and thermomechanical analysis of annealed poly(ethylene terephthalate) films. Eur. Polym. J. 44: 1475-1486. https://doi.org/10.1016/j.eurpolymj.2008.02.024
  89. Tran, P., T. Tran, J. Park, and B.-J. Lee (2011) Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm. Res. 1-26.
  90. Yoshioka, M., B. C. Hancock, and G. Zografi (1995) Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J. Pharm. Sci. 84: 983-986. https://doi.org/10.1002/jps.2600840814