Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.4.283

Solid Dispersion as a Strategy to Improve Drug Bioavailability  

Park, Jun-Hyung (BK21 Project Team, College of Pharmacy, Chosun University)
Chun, Myung-Kwan (BCWorld Pharm. Co.)
Cho, Hoon (College of Engineering, Chosun University)
Choi, Hoo-Kyun (BK21 Project Team, College of Pharmacy, Chosun University)
Publication Information
KSBB Journal / v.26, no.4, 2011 , pp. 283-292 More about this Journal
Abstract
Solid dispersion is one of well-established pharmaceutical techniques to improve the dissolution and consequent bioavailability of poorly water soluble drugs. It is defined as a dispersion of drug in an inert carrier matrix. Solid dispersions can be classified into three generations according to the carrier used in the system. First and second generations consist of crystalline and amorphous substances, respectively. Third generation carriers are surfactant, mixture of polymer and surfactants, and mixture of polymers. Solid dispersions can be generallyprepared by melting method and solvent method. While melting method requires high temperature to melt carrier and dissolve drug, solvent method utilizes solvent to dissolve the components. The improvement in dissolution through solid dispersions is attributed to reduction in drug particle size, improvement in wettability, and/or formation of amorphous state. The primary characteristics of solid dispersions, the presenceof drug in amorphous state, could be determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and fourier-transformed infrared spectroscopy (FTIR). In spite of the significant improvement in dissolution by solid dispersion technique, some drawbacks have limited the commercial application of solid dispersions. Thus, further studies should be conducted in a direction to improve the congeniality to commercialization.
Keywords
Solid dispersion; Amorphous state; Solubility; Dissolution; Bioavailability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Law, S. L., W. Y. Lo, F. M. Lin, and C. H. Chaing (1992) Dissolution and absorption of nifedipine in polyethylene glycol solid dispersion containing phosphatidylcholine. Int. J. Pharm. 84: 161-166.   DOI   ScienceOn
2 Hirasawa, N., S. Ishise, H. Miyata, and K. Danjo (2003) An attempt to stabilize nilvadipine solid dispersion by the use of ternary systems. Drug Dev. Ind. Pharm. 29: 997-1004.   DOI   ScienceOn
3 Stoll, R. G., T. R. Bates, K. A. Nieforth, and J. Swarbrick (1969) Some physical factors affecting the enhanced blepharoptotic activity of orally administered reserpine-cholanic acid coprecipitates. J. Pharm. Sci. 58: 1457-1459.   DOI
4 Yamamura, S. and J. A. Rogers (1996) Characterization and dissolution behavior of nifedipine and phosphatidylcholine binary systems. Int. J. Pharm. 130: 65-73.   DOI   ScienceOn
5 Kennedy, M., J. Hu, P. Gao, L. Li, A. Ali-Reynolds, B. Chal, V. Gupta, C. Ma, N. Mahajan, A. Akrami, and S. Surapaneni (2008) Enhanced Bioavailability of a Poorly Soluble VR1 Antagonist Using an Amorphous Solid Dispersion Approach: A Case Study. Molecular Pharmaceutics 5: 981-993.   DOI   ScienceOn
6 Simonelli, A. P., S. C. Metha, and W. I. Higuchi (1976) Dissolution rates of high energy sulfathiazide-povidone coprecipitates II: characterization of form of drug controlling its dissolution rate via solubility studies. J. Pharm. Sci. 65: 355-360.   DOI
7 Chiou, W. L. and S. Riegelman (1969) Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J. Pharm. Sci. 58: 1505-1510.   DOI
8 Najib, N. M., M. Suleiman, and A. Malakh (1986) Characteristics of the in vitro release of ibuprofen from polyvinylpyrrolidone solid dispersions. Int. J. Pharm. 32: 229-236.   DOI
9 Ford, J. L., A. F. Stewart, and J.-L. Dubois (1986) The properties of solid dispersions of indomethacin or phenylbutazone in polyethylene glycol. Int. J. Pharm. 28: 11-22.   DOI   ScienceOn
10 Ho, H.-O., H.-L. Su, T. Tsai, and M.-T. Sheu (1996) The preparation and characterization of solid dispersions on pellets using a fluidized-bed system. Int. J. Pharm. 139: 223-229.   DOI
11 Simonelli, A. P., S. C. Mehta, and W. I. Higuchi (1969) Dissolution rates of high energy polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates. J. Pharm. Sci. 58: 538-549.   DOI
12 Taylor, L. S. and G. Zografi (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14: 1691-1698.   DOI   ScienceOn
13 Leuner, C. and J. Dressman (2000) Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50: 47-60.   DOI   ScienceOn
14 Konno, H., T. Handa, D. E. Alonzo, and L. S. Taylor (2008) Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur. J. Pharm. Biopharm. 70: 493-499.   DOI   ScienceOn
15 Vasconcelos, T., B. Sarmento, and P. Costa (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Dis. Today 12: 1068-1075.   DOI   ScienceOn
16 van Drooge, D. J., W. L. J. Hinrichs, M. R. Visser, and H. W. Frijlink (2006) Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int. J. Pharm. 310: 220-229.   DOI   ScienceOn
17 Mura, P., M. T. Faucci, A. Manderioli, G. Bramanti, and P. Parrini (1999) Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersions. Drug Dev. Ind. Pharm. 25: 257-264.   DOI   ScienceOn
18 Li, F.-Q., J.-H. Hu, J.-X. Deng, H. Su, S. Xu, and J.-Y. Liu (2006) In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int. J. Pharm. 324: 152-157.   DOI   ScienceOn
19 Chow, A. H. L., C. K. Hsia, J. D. Gordon, J. W. M. Young, and E. I. Vargha-Butler (1995) Assessment of wettability and its relationship to the intrinsic dissolution rate of doped phenytoin crystals. Int. J. Pharm. 126: 21-28.   DOI
20 Yonemochi, E., Y. Ueno, T. Ohmae, T. Oguchi, S.-i. Nakajima, and K. Yamamoto (1997) Evaluation of amorphous ursodeoxycholic acid by thermal methods. Pharm. Res. 14: 798-803.   DOI   ScienceOn
21 Kim, E.-J., M.-K. Chun, J.-S. Jang, I.-H. Lee, K.-R. Lee, and H.-K. Choi (2006) Preparation of a solid dispersion of felodipine using a solvent wetting method. Eur. J. Pharm. Biopharm. 64: 200-205.   DOI   ScienceOn
22 Joshi, H. N., R. W. Tejwani, M. Davidovich, V. P. Sahasrabudhe, M. Jemal, M. S. Bathala, S. A. Varia, and A. T. M. Serajuddin (2004) Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int. J. Pharm. 269: 251-258.   DOI   ScienceOn
23 Nepal, P. R., H. K. Han, and H. K. Choi (2010) Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation. Int. J. Pharm. 383: 147-153.   DOI   ScienceOn
24 Serajuddin, A. T. (1999) Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88: 1058-1066.   DOI
25 Goldberg, A. H., M. Gibaldi, and J. L. Kanig (1966) Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures II: Experimental evaluation of a eutectic mixture: Urea-acetaminophen system. J. Pharm Sci. 55: 482-487.   DOI
26 Goldberg, A. H., M. Gibaldi, J. L. Kanig, and M. Mayersohn (1966) Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: Chloramphenicol-urea system. Journal of Pharmaceutical Sciences 55: 581-583   DOI
27 Kanig, J. L. (1964) Properties of fused mannitol in compressed tablets. J. Pharm. Sci. 53: 188-192.   DOI
28 Levy, G. (1963) Effect of particle size on dissolution and gastrointestinal absorption rates of pharmaceuticals. Am. J. Pharm. 135: 78-92.
29 Goldberg, A. H., M. Gibaldi, J. L. Kanig, and M. Mayersohn (1966) Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: Chloramphenicol-urea system. J. Pharm. Sci. 55: 581-583.   DOI
30 Hauss, D. J. (2007) Oral lipid-based formulations. Adv. Drug Del. Rev. 59: 667-676.   DOI   ScienceOn
31 Peltonen, L. and J. Hirvonen (2010) Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol. 62: 1569-1579.   DOI   ScienceOn
32 Liversidge, G. G. (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int. J. Pharm. 125: 91-97.   DOI   ScienceOn
33 Yeo, S.-D., G.-B. Lim, P. G. Debendetti, and H. Bernstein (1993) Formation of microparticulate protein powder using a supercritical fluid antisolvent. Biotechnol. Bioeng. 41: 341-346.   DOI
34 Jinno, J., N. Kamada, M. Miyake, K. Yamada, T. Mukai, M. Odomi, H. Toguchi, G. G. Liversidge, K. Higaki, and T. Kimura (2006) Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Rel. 111: 56-64.   DOI   ScienceOn
35 Shafiq, S., F. Shakeel, S. Talegaonkar, F. J. Ahmad, R. K. Khar, and M. Ali (2007) Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm. 66: 227-243.   DOI   ScienceOn
36 Nepal, P. R., H.-K. Han, and H.-K. Choi (2010) Preparation and in vitro-in vivo evaluation of $Witepsol^{\circledR}$ H35 based selfnanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10. Eur. J. Pharm. Sci. 39: 224-232.   DOI   ScienceOn
37 Tiwari, R. and K. Pathak (2011) Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm. 415: 232-243.   DOI   ScienceOn
38 Sekiguchi, K. and N. Obi (1961) Studies on absorption of eutectic mixture. I. a comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. 9: 866-872.   DOI
39 Chiou, W. L. and S. Riegelman (1971) Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 60: 1281-1302.   DOI
40 Corrigan, O. I. (1985) Mechanisms of dissolution of fast release solid dispersions. Drug Dev. Ind. Pharm. 11: 697-724.   DOI
41 Yonemochi, E., S. Kitahara, S. Maeda, S. Yamamura, T. Oguchi, and K. Yamamoto (1999) Physicochemical properties of amorphous clarithromycin obtained by grinding and spray drying. Eur. J. Pharm. Sci. 7: 331-338.   DOI   ScienceOn
42 Fasano, A. (1998) Novel approaches in oral delivery of macromolecules. J. Pharm. Sci. 87: 1351-1356.   DOI
43 Youn, Y. S., J. Y. Jung, S. H. Oh, S. D. Yoo, and K. C. Lee (2006) Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: Stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy. J. Control Rel. 114: 334-342.   DOI   ScienceOn
44 Sugawara, M., S. Kadomura, X. He, Y. Takekuma, N. Kohri, and K. Miyazaki (2005) The use of an in vitro dissolution and absorption system to evaluate oral absorption of two weak bases in pH-independent controlled-release formulations. Eur. J. Pharm. Sci. 26: 1-8.   DOI   ScienceOn
45 Mayersohn, M. (2002) Modern Pharmaceutics. 4nd ed, pp. 23-66. Marcel Dekker, United states.
46 Amidon, G. L., H. Lennernas, V. P. Shah, and J. R. Crison (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12: 413-420.   DOI   ScienceOn
47 Pouton, C. W. (2006) Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29: 278-287.   DOI
48 Lindenberg, M. (2004) Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 58: 265-278.   DOI   ScienceOn
49 Tran, P., T. Tran, J. Park, and B.-J. Lee (2011) Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm. Res. 1-26.
50 Karagiannidis, P. G., A. C. Stergiou, and G. P. Karayannidis (2008) Study of crystallinity and thermomechanical analysis of annealed poly(ethylene terephthalate) films. Eur. Polym. J. 44: 1475-1486.   DOI   ScienceOn
51 Yoshioka, M., B. C. Hancock, and G. Zografi (1995) Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J. Pharm. Sci. 84: 983-986.   DOI   ScienceOn
52 Verreck, G., A. Decorte, K. Heymans, J. Adriaensen, D. Liu, D. L. Tomasko, A. Arien, J. Peeters, P. Rombaut, G. Van den Mooter, and M. E. Brewster (2007) The effect of supercritical CO2 as a reversible plasticizer and foaming agent on the hot stage extrusion of itraconazole with EC 20 J. Supercrit. Fluids 40: 153-162.   DOI   ScienceOn
53 van Drooge, D.-J., W. L. J. Hinrichs, B. H. J. Dickhoff, M. N. A. Elli, M. R. Visser, G. S. Zijlstra, and H. W. Frijlink (2005) Spray freeze drying to produce a stable [Delta]9- tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation. Eur. J. Pharm. Sci. 26: 231-240.   DOI   ScienceOn
54 Won, D. H. (2005) Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 301: 199-208.   DOI   ScienceOn
55 Dhirendra, K., S. Lewis, N. Udupa, and K. Atin (2009) Solid dispersions: a review. Pak. J. Pharm. Sci. 22: 234-246.
56 Weuts, I., D. Kempen, G. Verreck, A. Decorte, K. Heymans, J. Peeters, M. Brewster, and G. V. d. Mooter (2005) Study of thephysicochemical properties and stability of solid dispersions of loperamide and PEG6000 prepared by spray drying. Eur. J. Pharm. Biopharm. 59: 119-126.   DOI   ScienceOn
57 Park, Y.-J., D.-S. Ryu, D. X. Li, Q. Z. Quan, D. H. Oh, J. O. Kim, Y. G. Seo, Y.-I. Lee, C. S. Yong, J. S. Woo, and H.-G. Choi (2009) Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulphate. Arch. Pharm. Res. 32: 893-898.   DOI
58 Park, Y.-J., D.-H. Oh, Y.-D. Yan, Y.-G. Seo, S.-N. Lee, H.-G. Choi, and C.-S. Yong (2010) Surface-attached solid dispersion. J. Pharm. Inv. 40: 103-112.   DOI
59 Joe, J. H., W. M. Lee, Y.-J. Park, K. H. Joe, D. H. Oh, Y. G. Seo, J. S. Woo, C. S. Yong, and H.-G. Choi (2010) Effect of the solid-dispersion method on the solubility and crystalline property of tacrolimus. Int. J. Pharm. 395: 161-166.   DOI   ScienceOn
60 Kerc, J. and S. Srcic (1995) Thermal analysis of glassy pharmaceuticals. Thermochim. Acta 248: 81-95.   DOI
61 Huttenrauch, R. (1974) Spritzgiessverfahren zur herstellung peroraler retardpräperate. Pharmazie 29: 297-302.
62 Kreuter, J. (1999) Grundlagen der Arzneiformenlehre. pp. 262-274. Springer, Germany.
63 Van den Mooter, G., M. Wuyts, N. Blaton, R. Busson, P. Grobet, P. Augustijns, and R. Kinget (2001) Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 12: 261-269.   DOI   ScienceOn
64 Klug, H. P. and L. E. Alexander (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. 2nd ed, pp. 55-58. Wiley, New York.
65 Verreck, G., A. Decorte, K. Heymans, J. Adriaensen, D. Liu, D. Tomasko, A. Arien, J. Peeters, G. Van den Mooter, and M. E. Brewster (2006) Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int. J. pharm. 327: 45-50.   DOI
66 DiNunzio, J. C., C. Brough, D. A. Miller, R. O. Williams, and J. W. McGinity (2010) Fusion processing of itraconazole solid dispersions by $kinetisol^{\circledR}$ dispersing: A comparative study to hot melt extrusion. J. Pharm. Sci. 99: 1239-1253.   DOI   ScienceOn
67 Tachibana, T. and A. Nakamura (1965) A methode for preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers: Dispersion of B-carotene by polyvinylpyrrolidone. Colloid Polym. Sci. 203: 130-133.
68 Karavas, E., E. Georgarakis, and D. Bikiaris (2006) Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. Eur. J. Pharm. Biopharm. 64: 115-126.   DOI   ScienceOn
69 Wang, X., A. Michoel, and G. Van den Mooter (2005) Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole. Int. J. Pharm. 303: 54-61.   DOI
70 Desai, J., K. Alexander, and A. Riga (2006) Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int. J. Pharm. 308: 115-123.   DOI
71 Jung, J.-Y., S. D. Yoo, S.-H. Lee, K.-H. Kim, D.-S. Yoon, and K.-H. Lee (1999) Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int. J. Pharm. 187: 209-218.   DOI   ScienceOn
72 Ceballos, A., M. Cirri, F. Maestrelli, G. Corti, and P. Mura (2005) Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Il Farmaco 60: 913-918.   DOI   ScienceOn
73 Prabhu, S., M. Ortega, and C. Ma (2005) Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam. Int. J. Pharm. 301: 209-216.   DOI
74 Van den Mooter, G., I. Weuts, T. De Ridder, and N. Blaton (2006) Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int. J. Pharm. 316: 1-6.   DOI   ScienceOn
75 Matsumoto, T. and G. Zografi (1999) Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm. Res. 16: 1722-1728.   DOI   ScienceOn
76 Hasegawa, A., M. Taguchi, R. Suzuki, T. Miyata, H. Nakagawa, and I. Sugimoto (1988) Supersaturation mechanism of drugs from solid dispersions with enteric coating agents. Chem. Pharm. Bull. 36: 4941-4950.   DOI   ScienceOn
77 Suzuki, H. and H. Sunada (1998) Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Chem. Pharm. Bull. 46: 482-487.   DOI   ScienceOn
78 Hasegawa, A., R. Kawamura, H. Nakagawa, and I. Sugimoto (1985) Dissolution mechanism of solid dispersions of nifedipine with enteric coating agents. J. Pharm. Sci. Technol. Jpn. 106: 586-592.
79 Yamashita, K., T. Nakate, K. Okimoto, A. Ohike, Y. Tokunaga, R. Ibuki, K. Higaki, and T. Kimura (2003) Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int. J. Pharm. 267: 79-91.   DOI   ScienceOn
80 Tiwari, R., G. Tiwari, B. Srivastava, and A.K. Rai (2009) Solid dispersions: an overview to modify bioavailability of poorly water soluble drugs. Int. J. Pharm. Tech. Res. 1: 1388-1449.
81 Yao, W.-W., T.-C. Bai, J.-P. Sun, C.-W. Zhu, J. Hu, and H.-L. Zhang (2005) Thermodynamic properties for the system of silybin and poly(ethylene glycol) 6000. Thermochim. Acta 437: 17-20.   DOI   ScienceOn
82 McGinity, J. W., P. Maincent, and H. Steinfink (1984) Crystallinity and dissolution rate of tolbutamide solid dispersions prepared by the melt method. J. Pharm. Sci. 73: 1441-1444.   DOI
83 Sekiguchi, K., N. Obi, and Y. Ueda (1964) Studies on absorption of eutectic mixtures. II. Absorption of fused conglomerates of chloramphenicol and urea in rabbits. Chem. Pharm. Bull. 12: 134-144.   DOI   ScienceOn
84 Allen, L. V., R. S. Levinson, and D. De Martono (1978) Dissolution rates of hydrocortisone and prednisone utilizing sugar solid dispersion systems in tablet form. J. Pharm. Sci. 67: 979-981.   DOI
85 Sheen, P.-C., A. R. Nanda, C. E. Rowlings, and N. P. Barker (2000) Water-Insoluble Drug Formulation. 1st ed, pp. 493-523. Interpharm Press, United states.
86 Speiser, P. (1966) Galenische aspekte der arzneimittelwirkung. Pharm. Acta Helv. 41: 321-342.
87 Karatas, A., N. Yuksel, and T. Baykara (2005) Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol. Farmaco 60: 777-782.   DOI   ScienceOn
88 Chauhan, B., S. Shimpi, and A. Paradkar (2005) Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur. J. Pharm. Sci. 26: 219-230.   DOI   ScienceOn
89 Yuksel, N., A. Karatas, Y. Ozkan, A. Savaser, S.A. Özkan, and T. Baykara (2003) Enhanced bioavailability of piroxicam using Gelucire 44/14 and Labrasol: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 56: 453-459.   DOI   ScienceOn
90 Mura, P., J. R. Moyano, M. L. Gonzalez-Rodriguez, A. M. Rabasco- Alvarez, M. Cirri, and F. Maestrelli (2005) Characterization and dissolution properties of detoprofen in binary and ternary solid dispersions with polyethylene glycol and surfactants. Drug Dev. Ind. Pharm. 31: 425-434.   DOI   ScienceOn