Browse > Article

Preparation and Characterization of Solid Dispersions of Itraconazole by using Aerosol Solvent Extraction System for Improvement in Drug Solubility and Bioavailability  

Lee, Si-Beum (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University)
Nam, Kyung-Wan (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University)
Kim, Min-Soo (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University)
Jun, Seoung-Wook (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University)
Park, Jeong-Sook (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University)
Woo, Jong-Soo (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University)
Hwang, Sung-Joo (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University)
Publication Information
Archives of Pharmacal Research / v.28, no.7, 2005 , pp. 866-874 More about this Journal
Abstract
The objective of this study was to elucidate the feasibility to improve the solubility and bioavailability of poorly water-soluble itraconazole via solid dispersions by using supercritical fluid (SCF). Solid dispersions of itraconazole with hydrophilic polymer, HPMC 2910, were prepared by the aerosol solvent extraction system (ASES) under different process conditions of temperature/pressure. The particle size of solid dispersions ranged from 100 to 500 nm. The equilibrium solubility increased with decrease (15 to 10 MPa) in pressure and increase (40 to $60^{\circ}C$) in temperature. The solid dispersions prepared at $60^{\circ}C$/15 MPa showed a slight increase in equilibrium solubility (approximately 27-fold increase) when compared to pure itraconazole, while those prepared at $60^{\circ}C$/10MPa showed approximately 610-fold increase and no endothermic peaks corresponding to pure itraconazole were observed, indicating that itraconazole might be molecularly dispersed in HPMC 2910 in the amorphous form. The amorphous state of itraconazole was confirmed by DSC/XRD data. The pharmacokinetic parameters of the ASES-processed solid dispersions, such as $T_{max},\;C_{max},\;and\;AUC_{0-24h}$ were almost similar to $Sporanox_{\circledR}$ capsule which shows high bioavailability. Hence, it was concluded that the ASES process could be a promising technique to reduce particle size and/or prepare amorphous solid dispersion of drugs in order to improve the solubility and bioavailability of poorly water-soluble drugs.
Keywords
Itraconazole; Supercritical fluid; Aerosol solvent extraction system(ASES); Solubility; Solid dispersion; Poorly water-soluble drug;
Citations & Related Records

Times Cited By Web Of Science : 20  (Related Records In Web of Science)
Times Cited By SCOPUS : 16
연도 인용수 순위
1 Leuner, C. and Dressman, J., Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm., 50, 47-60 (2000)   DOI   ScienceOn
2 Palakodaty, S., York, P., and Pritchard, J., Supercritical fluid processing of materials from aqueous solutions: the application of SEDS to lactose as a model substance. Pharm. Res., 15, 1835-1843 (1998)   DOI   ScienceOn
3 Paul, M. V., Valentine, F. V., and Roger, P. G., Beads having a core coated with an antifungal and a polymer. Patent WO 94- 05263 (1994)
4 Shin-Etsu Catalogue, USP Hydroxypropyl Methylcellulose, 'PHARMACOAT' Film Coating Materil and Binder, No 95.9/ 1,000, Shin-Etsu Chemical Co., Ltd
5 Woo, J. S., Antifungal oral composition containing itraconazole and process for preparing same. US Patent 6,039,981 (2000)
6 Engwicht, A., Girreser, U., and Muller, B. W., Critical properties of lactide-co-glycolide polymers for the use in microparticle preparation by the aerosol solvent extraction system. Int. J. Pharm., 185, 61-72 (1999)   DOI   ScienceOn
7 Harwood, R. J., Hydroxypropylmethylcellulose, Handbook of Pharmaceutical Expients 3rd edition, American Pharmaceutical Association/The Pharmaceutical Press., p. 252-255 (2000)
8 Kohri, N., Yamayoshi, Y., Xin, H., Iseki, K., Sato, N., Todo, S., and Miyazaki, K., Improving the oral bioavailability of albendazole in rabbits by the solid dispersion technique. J. Pharm. Phamacol., 51, 159-164 (1999)   DOI   ScienceOn
9 De Beule, K. and Van Gestel, J., Pharmacology of itraconazole. Drugs, 61, 27-37 (2001)
10 Yoo, S. D., Lee, S. H., Kang, E., Jun, J., Jung, J. Y., Park, J. W., and Lee, K. H., Bioavailability of itraconazole in rats and rabbits after administration of tablets containing solid dispersion particles. Drug Dev. Ind. Pharm., 26, 27-34 (2000)   DOI   ScienceOn
11 Suzuki, H. and Sunada, H., Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Chem. Pharm. Bull., 46, 482-487 (1998)   DOI   ScienceOn
12 Willems, L., van der Geest, R., and de Beule, K., Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J. Clin. Pharm. Therap., 26, 159-169 (2001)   DOI   ScienceOn
13 Bustami, R. T., Chan, H., Sweeney, T., Dehghani, F., and Foster, N. R., Generation of fine powders of recombinant human deoxyribonuclease using the aerosol solvent extraction system. Pharm. Res., 20, 2028-2035 (2003)   DOI   ScienceOn
14 Marr, R. and Gamse, T., Use of supercritical fluids for different processes including new developments-a review. Chem. Eng. Proc., 39, 19-28 (2000)   DOI   ScienceOn
15 Jung, J. and Perrut, M., Particle design using supercritical fluids: Literature and patent survey. J. Supercrit. Fluid, 20, 179-219 (2001)   DOI   ScienceOn
16 Jung, J. Y., Yoo, S. D., Lee, S. H., Kim, K. H., Yoon, D. S., and Lee, K. H., Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int. J. Pharm., 187, 209-218 (1999)   DOI   ScienceOn
17 Yeo, S. D., Debendetti, P. G., Patro, S. Y., and Przybycien, T. M., Secondary structure characterization of microparticulate insulin powders. J. Pharm. Sci., 83, 1651-1656 (1994)   DOI   ScienceOn
18 Kitamura, M., Yamamoto, M., Yoshinaga, Y., and Masuoka, H., Crystal size control of sulfathiazole using high pressure carbon dioxide. J. Cryst. Growth., 178, 378-386 (1997)   DOI   ScienceOn
19 Uch, A. S., Hesse, U., and Dressman, J. B., Use of 1-methylpyrrolidone as a solubilizing agent for determining the uptake of poorly soluble drugs. Pharm. Res., 16, 968-671 (1999)   DOI   ScienceOn
20 Kordikowski, A., Shkunov, T., and York, P., Polymorph control of sulfathizole in supercritical $CO_{2}$. Pharm. Res., 18, 682-688 (2001)   DOI   ScienceOn
21 Ghaderi, R., Artursson, P., and Carlfors, J., Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Pharm. Res., 16, 676- 681 (1999)   DOI   ScienceOn
22 Tom, J. W. and Debenedetti, P. G., Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions. Biotechnol. Prog., 7, 403-411 (1991)   DOI   ScienceOn
23 Elvassore, N., Baggio, M., Pallado, P., and Bertucco, A., Production of different morphologies of biocompatible polymeric materials by supercritical $CO_{2}$ antisolvent techniques. Biotechnol. Bioeng., 73, 449-457 (2001)   DOI   ScienceOn
24 Palakodaty, S. and York, P., Phase behavioral effects on particle formation processes using supercritical fluids. Pharm. Res., 16, 976-985 (1997)
25 Randolph, T. W., Randolph, A. D., Mebes, M. and Yeung, S., Sub-micrometer-sized biodegradable particles of poly(Llactic acid) via the gas antisolvent spray precipitation process. Biotechnol. Prog., 9, 429-435 (1993)   DOI   ScienceOn
26 Moneghini, M., Kikic, I., Voinovich, D., Perissutti, B., and Filipovic- Grcic, J., Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution. Int. J. Pharm., 222, 129-138 (2001)   DOI   ScienceOn
27 Young, T. J., Mawson, S., Johnston, K. P., Henriksen, I. B., Pace, G. W., and Mishra, A. K., Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol. Prog., 16, 402-407 (2000)   DOI   ScienceOn
28 Stevens, D. A., Itraconazole in cyclodextrin solution. Pharmacotherapy, 19, 603-611 (1999)   DOI   PUBMED   ScienceOn
29 Colette, B. L. E., Geert, V., and Dany, T., Antifungal compositions with improved bioavailability. Patent WO 97-44014 (1997)
30 Martin, T. M., Bandi, N., Shulz, R., Roberts, C. B., and Kompella, U. B., Preparation of Budesonide and Budesonide-PLA Microparticles Using Supercritical Fluid Precipitation Technology. AAPS Pharm. Sci.Teh., 3(3): article 18 (2002)
31 Miyake, K., Irie, T., Arima, H., Hirayama, F., Uekama, K., Hirano, M., and Okamaoto, Y., Characterization of itraconazole/2- hydroxypropyl-beta-cyclodextrin inclusion complex in aqueous propyleneglycol solution. Int. J. Pharm., 179, 237-245 (1999)   DOI   ScienceOn
32 Okimoto, K., Miyake, M., Ibuki, R., Yamasumura, M., Ohnish, N., and Nakai, T., Dissolution mechanism and rate of solid dispersion particles of nilvadipine with hydroxypropyl methylcellulose. Int. J. Pharm., 159, 85-93 (1997)   DOI   ScienceOn
33 Bleich, J. and Muller, B. W., Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process. J. Microencapsul., 13, 131-139 (1996)   DOI   PUBMED