• Title/Summary/Keyword: Solid State detector

Search Result 60, Processing Time 0.035 seconds

The effect of geometrical parameters on the radon emanation coefficient and different radon parameters

  • Entesar H. El-Araby;A. Azazi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4096-4101
    • /
    • 2023
  • Radon is a radioactive gas produced from the uranium-238 series. Radon gas affects public health and is the second cause of lung cancer. The study samples were collected from one area of the city of Jazan, southwest of the Kingdom of Saudi Arabia. The influence of engineering and physical parameters on the emanation coefficient of gas and other gas parameters was studied. Parameters for radon were measured using a CR-39 Solid-State Nuclear Track Detector (SSNTD) through a sealed emission container. The results showed that the emanation coefficient was affected directly by the change in the grain size of the soil. All parameters of measured radon gas have the same behavior as the emanation coefficient. The relationship between particle size and emanation coefficient showed a good correlation. The values of the emanation coefficient were inversely affected by the mass of the sample, and the rest of the parameters showed an inverse behavior. The results showed that increasing the volume of the container increases the accumulation of radon sons on the wall of the container, which increases the emission factor. The rest of the parameters of radon gas showed an inverse behavior with increasing container size. The results concluded that changing the engineering and physical parameters has a significant impact on both the emanation coefficient and all radon parameters. The emanation coefficient affects the values of the radiation dose of an alpha particle.

A New Aluminium Container for $\gamma$-Ray Spectrometry Analysis of Radium and Radon (라듐 및 라돈의 감마선 분광 분석을 위한 알루미늄 용기의 제작 및 특성 조사)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Seo, Bum Kyoung
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.743-750
    • /
    • 2000
  • For the ${\gamma}$-ray spectrometry analysis of radium and radon in environmental samples, plastic Marinelli beakers have been usually used. But, there are two problems; one is the increment of background by adsorption of airborne radon daughters on the plastic beaker, and other is the incompleteness of radioactive equilibrium by the loss of gaseous radon produced during the radioactive equilibrium process. In order to solve these problems, we made aluminium counting container, and investigated its characteristics. We investigated radioactive equilibrium process using the aluminium container. We found that both solid and liquid samples reached at radioactive equilibrium state in the aluminium container without loss of gaseous radon. By the use of the aluminium container, we established radon and radium analysis method of solid and liquid samples using gamma-ray spectrometry.

  • PDF

Thermochemical Sulfate Reduction Simulation Experiments on the Formation and Distribution of Organic Sulfur Compounds in the Tuha Crude Oil

  • Yue, Changtao;Li, Shuyuan;Song, He
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2057-2064
    • /
    • 2014
  • Thermochemical sulfate reduction (TSR) was conducted in autoclave on the system of crude oil and $MgSO_4$ at different temperatures. Gas chromatography pulsed flame photometric detector (GC-PFPD) was used to detected the composition of organic sulfur compounds in oil phase products. The results of the analysis indicate that with increased temperature, the contents of organic sulfur compounds with high molecular weight and thermal stability, such as benzothiophenes and dibenzothiophenes, gradually became dominated. In order to gain greater insight into the formation and distribution of organic sulphur compounds from TSR, positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in detecting the detailed elemental composition and distribution of them. The mass spectra showed that the mass range of sulfur compounds was 200-550 Da. Four sulfur class species, $S_1$, $N_1S_1$, $O_1S_1$ and $O_2S_1$, were assigned in the positive-ion spectrum. Among the identified sulfur compounds, the $S_1$ class species was dominant. The most abundant $S_1$ class species increase associated with the DBE value and carbon number increasing which also indicates the evolution of organic sulfur compounds in TSR is from the labile series to the stable one. In pure blank pyrolysis experiments with crude oil cracking without TSR, different composition and distribution of organic sulfur compounds in oil phase products were seen from mass spectra in order to evaluate their pyrolysis behaviors without $MgSO_4$. FT-IR and XRD were used in analyzing the products of solid phases. Two distinct crystallographic phases MgO and $MgSO_4$ are found to coexist in the products which demonstrated the transformation of inorganic sulfur compounds into organosulfur compounds exist in TSR.

Adaptive Design Techniques for High-speed Toggle 2.0 NAND Flash Interface Considering Dynamic Internal Voltage Fluctuations (고속 Toggle 2.0 낸드 플래시 인터페이스에서 동적 전압 변동성을 고려한 설계 방법)

  • Yi, Hyun Ju;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.251-258
    • /
    • 2012
  • Recently, NAND Flash memory structure is evolving from SDR (Single Data Rate) to high speed DDR(Double Data Rate) to fulfill the high performance requirement of SSD and SSS. Accordingly, the proper ways of transferring data that latches valid data stably and minimizing data skew between pins by using PHY(Physical layer) circuit techniques have became new issues. Also, rapid growth of speed in NAND flash increases the operating frequency and power consumption of NAND flash controller. Internal voltage variation margin of NAND flash controller will be narrowed through the smaller geometry and lower internal operating voltage below 1.5V. Therefore, the increase of power budge deviation limits the normal operation range of internal circuit. Affection of OCV(On Chip Variation) deteriorates the voltage variation problem and thus causes internal logic errors. In this case, it is too hard to debug, because it is not functional faults. In this paper, we propose new architecture that maintains the valid timing window in cost effective way under sudden power fluctuation cases. Simulation results show that the proposed technique minimizes the data skew by 379% with reduced area by 20% compared to using PHY circuits.

Compressibility of $FeS_{2}$ ($FeS_{2}$의 압축성 연구)

  • Kim, Young-Ho;Hwang, Gil-Chan;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.189-195
    • /
    • 2006
  • Compression work on a pyrite powder has been carried out using energy dispersive X-ray diffraction (EDXRD) with Mao-Bell type diamond anvil cell (DAC) and synchrotron radiation(SR) at room temperature. It has been reported the bulk moduli of pyrite show the large variations depending on the experimental conditions as well as the apparatus used. Thus, two kinds of sample in different pressure transmitting media of both NaCl and MgO powder emerged in alcoholic fluids were subjected to measure their compressibilities. Bulk moduli thus obtained are 138.9 GPa and 198.2 GPa, respectively, and this result contradicts to the anticipated values according to the hydrostaticity conditions of the sample chamber. This might be due to the alcoholic fluids phase transition mainly with the side effects from the difference of both solid state detector (SSD) used and E*d value applied. All experiments were performed at the Beam Line 1B2 of Pohang Light Source (PLS).

Quantitative Analysis of Citrate in Foods Using a Potentiometric Enzyme Biosensor (전위차법 효소 바이오센서를 이용한 식품의 구연산 정량분석)

  • Kwon, Ji-Young;Kim, Mee-Ra
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.169-175
    • /
    • 2006
  • Potentiometric biosensor using flow injection analysis system was developed to determine citrate concentration in foods. Biosensor system consisted of sample injector, peristaltic pump, enzyme reactor, carbonate ion selective solid-state electrode, reference electrode, detector, and recorder. Enzyme reactor was prepared with immobilized citrate lyase and oxaloacetate decarboxylase. Carbonate ions produced through enzyme reactions of citrate were potentiometrically detected by ion selective electrode. Optimum conditions for biosensor system were investigated. Interference effect of major sugars and organic acids was less than 5% on citrate biosensor system. Citrate concentrations in fruit juices were determined by biosensor and gas chromatography. No significant difference was observed between two analytical methods. Results indicate citrate biosensor is useful in determining citrate concentration in foods.

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

A Study on the Effects of Wedge Filter in Peripheral Dose Distribution (Wedge Filter가 주변선량분포에 주는 영향에 관한 연구)

  • Kang, Wee-Saing;Kim, Il-Han;Park, Charn-Il
    • Radiation Oncology Journal
    • /
    • v.3 no.2
    • /
    • pp.145-151
    • /
    • 1985
  • The peripheral dose distributions of wedge fields of Co-60 $\gamma-ray$ and 1 OMV x-ray were measured by the solid state detector controlled by means of semiautomatic water phentom system. The measurements were made on the principal plane parallel to the cross section of wedge filter (blade and ridge direction). For parallel motion of the detector to the beam axis the distance from the margin of radiation field at suface were 3, 5 and 10cm. For tranverse motion the depth of measurement were dm, 5, 10 and 15cm. The followings were drawn from the measurement. 1. The peripheral dose of the blade side of wedges was generally higher than that of the ridge side at symmetric point about beam axis. 2. In the superficial region phenomena of dose build-up appeared. 3. For Co-60 $\gamma-ray$ field, the peripheral dose did not monotonously decrease with the distance from the field margin but increase in some range, consequently showing a peak dose. 4. The peripheral dose did not only depend on radiation quality and field size, but also on wedge angle and wedge direction.

  • PDF

Calibration of CR-39 for Hadron Radiotherapy using 400 MeV/u C ions (400 MeV/u 탄소 이온에 대한 방사선치료 선량 측정용 고체비적검출기의 교정)

  • Kim, Sunghwan;Nam, Uk-Won;Lee, Jaejin;Park, Won-Kee;Pyo, Jeonghyun;Moon, Bong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • In this study, equivalent dose and LET (Linear Energy Transfer) calibration of CR-39 SSNTD (Solid State Nuclear Track Detector) were performed using 400 MeV/u C heavy ions in HIMAC (Heavy Ion Medical Accelerator in Chiba) for high LET radiation therapy. The irradiated CR-39 SSNDTs were etched according the etching condition of JAXA (Japan Aerospace Exploration Agency). And the etched SSNTDs were analyzed by using Image J. Determined frequency mean dose (${\bar{y_D}}$)and dose-mean lineal energy (${\bar{y_F}}$)of 400 MeV/u C are about 8.5keV/mm and 10.1 keV/mm, respectively by using the CR-39 SSNTD. This value is very similar to the results calculated by GEANT4 Monte Carlo simulation and measured with TEPC (Tissue Equivalent Proportional Counter) active radiation detector. We could determine the equivalent dose and LET calibration factors of CR-39. And we confirmed that the CR-39 SSNTD was useful for high LET radiation dosimetry in hadron radiotherapy.

Trace-level Determination of N-nitrosodimethylamine(NDMA) in Water Samples using a High-Performance Liquid Chromatography with Fluorescence Derivatization (HPLC와 Fluorescence Derivatization 기법을 이용한 극미량 NDMA의 수질분석)

  • Cha, Woo-Suk;Fox, Peter;Nalinakumari, Brijesh;Choi, Hee-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.223-228
    • /
    • 2006
  • High-performance liquid chromatography(HPLC) and fluorescence derivatization were applied for a trace-level N-nitrosodimethylamine(NDMA) analysis of water samples. Fluorescence intensity was optimized with the excitation wavelength of 340 nm and the emission wavelength of 530 nm. pH adjustment after denitrosation was necessary to get a maximum intensity at pH between 9 and 12. Maximum intensity was found with a dansyl chloride concentration of 330 to 500 mg/L. Percentile error in the water sample analyses through solid phase extraction was 12-162% and 6-23% for the lower concentration level(10-200 ng/L NDMA) and the higher level(100-1000 ng/L NDMA), respectively, showing more discrepancy in lower level. However, the average ratios of estimated NDMA to the standard NDMA were close to 1 for both concentration ranges, presenting this HPLC method could detect from tens to hundreds nanograms NDMA per liter. Accurate determination of NDMA, which was injected to a wastewater effluent, revealed the selectivity of fluorescence derivatization for the target compound(NDMA) in the presence of complex interfering compounds. The HPLC with fluorescence derivatization may be applicable for determining NDMA of water and wastewater samples fur various research purposes.