Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.7.2057

Thermochemical Sulfate Reduction Simulation Experiments on the Formation and Distribution of Organic Sulfur Compounds in the Tuha Crude Oil  

Yue, Changtao (State Key Laboratory of Heavy Oil Processing, China University of Petroleum)
Li, Shuyuan (State Key Laboratory of Heavy Oil Processing, China University of Petroleum)
Song, He (Research Institute of Petroleum Engineering of CNPC)
Publication Information
Abstract
Thermochemical sulfate reduction (TSR) was conducted in autoclave on the system of crude oil and $MgSO_4$ at different temperatures. Gas chromatography pulsed flame photometric detector (GC-PFPD) was used to detected the composition of organic sulfur compounds in oil phase products. The results of the analysis indicate that with increased temperature, the contents of organic sulfur compounds with high molecular weight and thermal stability, such as benzothiophenes and dibenzothiophenes, gradually became dominated. In order to gain greater insight into the formation and distribution of organic sulphur compounds from TSR, positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in detecting the detailed elemental composition and distribution of them. The mass spectra showed that the mass range of sulfur compounds was 200-550 Da. Four sulfur class species, $S_1$, $N_1S_1$, $O_1S_1$ and $O_2S_1$, were assigned in the positive-ion spectrum. Among the identified sulfur compounds, the $S_1$ class species was dominant. The most abundant $S_1$ class species increase associated with the DBE value and carbon number increasing which also indicates the evolution of organic sulfur compounds in TSR is from the labile series to the stable one. In pure blank pyrolysis experiments with crude oil cracking without TSR, different composition and distribution of organic sulfur compounds in oil phase products were seen from mass spectra in order to evaluate their pyrolysis behaviors without $MgSO_4$. FT-IR and XRD were used in analyzing the products of solid phases. Two distinct crystallographic phases MgO and $MgSO_4$ are found to coexist in the products which demonstrated the transformation of inorganic sulfur compounds into organosulfur compounds exist in TSR.
Keywords
Thermochemical sulfate reduction; Crude oil; Organic sulfur compounds; Magnesium sulfate; Simulation experiment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, T. S.; He, Q.; Lu, H.; Peng, P.; Liu, J. Z. Sci. China Ser. D 2009, 52, 1550-1558.   DOI
2 Lu, H.; Chen, T. S.; Liu, J. Z.; Peng, P. A.; Lu, Z. H.; Ma, Q. L. Org. Geochem. 2010, 41, 1189-1197.   DOI
3 Goldhaber, M. B.; Orr, W. L. In: Vairavamurthy, M. A., Schoonen, M. A. A., Eds.; Geochemical Transformations of Sedimentary Sulfur; ACS Symposium Series, vol. 612. American Chemical Society, Washington, DC, 1995; pp 412-425.
4 Kiyosu, Y. Chem. Geol. 1980, 30, 47-56.   DOI
5 Hoffmann, G. G.; Steinfatt, I. In: Proceedings of the 205th ACS National Meeting Enhanced Oil Recovery Symposium (Denver, 3/ 28/93-4/2/93) Proceedings 38, 1993; pp 181-184.
6 Yue, C. T.; Li, S. Y.; Ding, K. L.; Zhong, N. N. Sci. China Ser. D 2005, 48, 1197-1202.   DOI
7 Cross, M. M.; Manning, D. A. C.; Bottrell, S. H.; Worden, R. H. Org. Geochem. 2004, 35, 393-404.   DOI
8 Zhang, T. W.; Ellis, G. S.; Wang, K.-S.; Walters, C. C.; Kelemen, S. R.; Gillaizeau, B.; Tang, Y. Org. Geochem. 2007, 38, 897-910.   DOI
9 Liang, C. L. High Sulfur Crude Oil Processing; Beijing: China Petrochemical Press: 2001.
10 Orr, W. L. Aapg. Bull. 1974, 58, 2295-2318.
11 Seewald, J. S. Nature 2003, 426(6964), 327-333.   DOI   ScienceOn
12 Toland, W. G. J. Am. Chem. Soc. 1960, 82, 1911-1916.   DOI
13 Kiyosu, Y.; Krouse, H. R. Geochem. J. 1993, 27, 49-57.   DOI
14 Shi, Q.; Xu, C. M.; Zhao, S. Q.; Chung, K. H.; Zhang, Y. H.; Gao, W. Energy Fuels 2009, 24(1), 563-569.
15 Klein, G. C.; Rodgers, R. P.; Marshall, A. G. Fuel 2006, 85(14-15), 2071-2080.   DOI   ScienceOn
16 Qian, K.; Rodgers, R. P.; Hendrickson, C. L.; Emmett, M. R. Energy Fuels 2001, 15(2), 492-498.   DOI   ScienceOn
17 Muller, H.; Andersson, J. T.; Schrader, W. Anal. Chem. 2005, 77(8), 2536-2543.   DOI
18 Panda, S. K.; Schrader, W.; Andersson, J. T. Anal. Bioanal. Chem. 2008, 392(5), 839-848.   DOI
19 Peng, W. S.; Liu, G. K. The Charts of the Infrared Spectra of the Minerals (in Chinese); Beijing: Science Press, 1982.
20 Kim, Y.; Kim, S. J. Am. Soc. Mass Spectrom. 2010, 21(3), 386-392.   DOI
21 Bae, E.; Na, J. G.; Chung, S. H.; Kim, H. S.; Kim, S. Energy Fuels 2010, 24(4), 2563-2569.   DOI   ScienceOn
22 Ding, K. L.; Li, S. Y.; Yue, C. T.; Zhong, N. N. J. Fuel Chem. Technol. 2007, 35, 401-406.   DOI
23 Purcell, J. M.; Juyal, P. D.; Kim, G.; Rodgers, R. P.; Hendrickson, C. L.; Marshall, A. G. Energy Fuels 2007, 21(5), 2869-2874.   DOI