• Title/Summary/Keyword: Solid Geometry

Search Result 277, Processing Time 0.023 seconds

A Study on the Pattern of Hair Design Expression in the Application of Geometrical Idea as a Means of Cognition (인식도구로서 기하학 관념의 적용에 따른 헤어디자인 표현유형 연구)

  • Lim, Mi-Ra
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.4 no.1 s.7
    • /
    • pp.28-34
    • /
    • 2006
  • The purpose of this study is to historically examine the thoughts and ideas of geometry and to analyze the expression style of design applied to the mass communication such as magazines and world wide webs, by giving definitions on the ideas of geometry and the pattern of cognition. Geometry was evolved to Descartes's analytical geometry, projective geometry, non-Euclidean geometry and Topology at the end of 19th century. When geometry applies to design styles, it is devided into two field, plane geometry and solid geometry. The development of geometry was completed from the Pythagoras symbolic theory of number to Platonic spiritual geometry and Euclidean geometry. It can be studied that those have what kind of symbolic meanings and transformations on each hair design plan. It can also analized how those symbolic forms are appeared on the design form. This tendency means that there is always a try for the use of geometry as reasonable device for hair design. If the hair design and geometry have logical and artistical relation, we can make buildings which have a order, balance and harmony.

  • PDF

A Study on Automatic Generation for 3-Dimensional Geometry of Gerotor and Hob (제로터와 호브의 3차원 형상 자동 생성에 관한 연구)

  • 정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.458-463
    • /
    • 1999
  • When designing a gerotor, designers determine basic dimensions of a gerotor with transmitted power considering strength, interference and so on. But, designers can not easily obtain the tooth profile generated by dimensions as well as the geometry of generating hob for cutting the tooth profile. In order to resolve these problems, an automatic design system creating not only the solid model of a gerotor but also that of the generating hob using the design parameters of dimensions is developed. Through the developed system, designers can improve the efficiency of design and satisfy the variable requirements of design as well. In this research, the three-dimensional solid model of gerotor is generated considering the design parameters. Besides, that of generating hob with respect to the design parameters of hob is created automatically. The system is developed using Visual Basic and its three-dimensional geometric modeling module is constructed using SolidWorks.

  • PDF

Development of Automated J-Integral Analysis System for 3D Cracks (3차원 J적분 계산을 위한 자동 해석 시스템 개발)

  • 이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.74-79
    • /
    • 2000
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic nonlinear analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The complete finite element(FE) model generated, and a stress analysis is performed. In this system, burden to analysts fur introducing 3D cracks to the FE model as well as fur estimating their fracture mechanics parameters can be dramatically reduced. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

  • PDF

Bridging the gap between CAD and CAE using STL files

  • Bianconi, Francesco
    • International Journal of CAD/CAM
    • /
    • v.2 no.1
    • /
    • pp.55-67
    • /
    • 2002
  • In many areas of industry, it is desirable to have fast and reliable systems in order to quickly obtain suitable solid models for computer- aided analyses. Nevertheless it is well known that the data exchange process between CAD modelers and CAE packages can require significative efforts. This paper presents an approach for geometrical data exchange through triangulated boundary models. The proposed framework is founded on the use of STL file specification as neutral format file. This work is principally focused on data exchange among CAD modelers and FEA packages via STL. The proposed approach involves the definition of a topological structure suitable for the STL representation and the development of algorithms for topology and geometry data processing in order to get a solid model suitable for finite element analysis or other computer aided engineering purposes. Different algorithms for model processing are considered and their pros and cons are discussed. As a case study, a prototype modeler which supports an exporting filter for a commercial CAE package has been implemented.

End-mill Modeling and Manufacturing Methodology via Cutting simulation (Cutting simulation을 이용한 End-milling cutter의 모델링 및 제작에 관한 연구)

  • Kim J.H.;Park S.J.;Kim J.H.;Park J.W.;Ko T.J.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.456-463
    • /
    • 2005
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data fur fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data fer machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used fur virtual cutting test and analysis as well.

  • PDF

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

Automated Forming Sequence Design System for Multistage Cold Forging Parts (다단 냉간단조품의 자동공정설계시스템)

  • Park, J.C.;Kim, B.M.;Kim, S.W.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.77-87
    • /
    • 1994
  • This paper deals with an automated forming sequence design system by which designers can determine desirable operation sequences even if they have little experience in the design of cold forging process. The forming sequence design in the cold forging is very important and requires many kinds of technical and empirical knowledge. They system isproposed, which generates forming sequence plans for the multistage cold forging of axisymmtrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning process. To recognize the geometry of the product section, section entity representation and primitive geometries were used. Section entity representation can be used for the calculation of maximum diameter, maximum height, and volume. Forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics (diameter, height, and radius), the product geometry is expressed by a list of the priitive geometries. Accordingly the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. Based on the results of forming sequence, process variables(strain, punch pressure, die inner pressure, and forming load) are determined.

  • PDF

Estimation of the Superelevation Safety Factor Considering Operating Speed at 3-Dimensional Alignment (입체선형의 주행속도를 고려한 편경사 안전율 산정에 관한 연구)

  • Park, Tae-Hoon;Kim, Joong-Hyo;Park, Je-Jin;Park, Ju-Won;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.159-163
    • /
    • 2005
  • The propriety between suppliers and demanders in geometric design is very important. Although the final purpose of constructing roads is to concern about the driver s comfort, unfortunately, it has not been considered so far. We've considered the regularity and quickness in considering driver's comfort but there should be considered the safety for the accident as well. If drivers are appeared to be more speeding than designer's intention, there will be needed some supplements to increase the safety rate for the roads. Even if both an upward and downward section are supposed to exist at the same time for solid geometry of the roads like this, it is true that the recent design for the 3-D solid geometry section has been done as flat 2-D and the minimum plane curve radius and the maximum cant have been decided just by calculating without considering operating speed between an upward and downward section at the same point. In this investigation, thus, I'd like to calculate the safety of the cant by considering the speed features of the solid geometry for the first lane of four lane rural roads. To begin with, we investigated the driving speed of the car, which is not been influenced by a preceding car to analyze the influence of the geometrical structure by using Nc-97. Secondly, we statistically analyzed the driving features of the solid geometry after comparing the 6 sections, that is, measuring the driving speed feature at 12 points and combining the influence of the vertical geometry and plane geometry to the driving speed of the plane curve which was researched before. Finally, we estimated the value of cant which considers the driving speed not by using it which has applied uniformly without considering it properly, though there were some differences between a designed speed and driving speed through the result of the basic statistical analysis but by introducing the new safety rate rule, a notion of ${\alpha}$. As a result of the research, we could see the driving features of the car and suggest the safety rate which considers these. For considering the maximum cant, if we apply the safety rate, the result of this experiment, which considers 3-D solid geometry, there'll be the improvement of the driver's safety for designing roads. In addition, after collecting and analyzing the data for the road sections which have various geometrical structures by expanding this experiment it is considered that there should be developed the models which considers 3-D solid geometry.

Theoretical Analysis on the Hot Surface Ignition of a Rectangular-Shape Solid Fuel

  • Kim, Se-Won
    • Journal of Energy Engineering
    • /
    • v.4 no.2
    • /
    • pp.297-302
    • /
    • 1995
  • Ignition of a reactive solid in a shape of square corner by a hot surface is studied theoretically. Ignition time and the location of ignition point are determined as a function of dimensionless parameters, with the use of the homogeneous model of ignition. The effect of geometry on the ignition of solid fuel results in the local characteristics: the reaction is initiated in a hot point in depth of the substance. It is shown that ignition time is proportional to the dimensionless initial temperature, whereas for the ignition of the semiinfinite body this dependence was quadratic.

  • PDF