• Title/Summary/Keyword: Solid Element

Search Result 983, Processing Time 0.024 seconds

Free Vibration Analysis of the Partial Fuel Assembly Under Water Using Substructure Method (부분구조법을 이용한 부분핵연료 집합체의 수중 자유진동해석)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Jae-Yong;Rhee, Hui-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.246-249
    • /
    • 2006
  • Finite element vibration analysis of the trial 5x5 partial fuel assembly in the still water was performed using the substructure method. ANSYS software was used as a finite element modeling and modal analysis tool. The calculated natural frequencies of the partial fuel assembly were more consistent with the experimental results for the identical test model compared to the much larger solid model. This modeling technique can be utilized for the fuel assembly dynamic behavior analysis under normal operation, seismic and loss-of-coolant-accident analysis.

  • PDF

지그재그이론을 이용한 유한요소개발 및 응용

  • Lee, Deog-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.257-266
    • /
    • 2004
  • A three node triangular element with drilling rotations incorporating improved higher-order zig-zag theory(HZZT) is developed to accurately assess the stress distribution through thickness of the laminated plate and analyze the vibration of pretwisted composite plates with embedded damping layer. Shear force matching conditions are enforced along the interfaces between the embedded damping patch and the border patch. The natural frequencies and model loss factors are calculated for cantilevered pretwisted composite blade with damping core with the present triangular element, and compared to experiments and MSC/NASTRAN using a layered combination of plate and solid elements.

  • PDF

Analysis of the Concrete Lining for Water Pressure Tunnel (수로 압력터널의 콘크리트Lining 해석)

  • 김승권;임정열;공천석;안주옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.27-33
    • /
    • 2001
  • Objective of this study is to investigate the structural behavior of the concrete lining in water pressure tunnel. In many cases, the concrete lining of water pressure tunnel has not considered as a major structure comparing to the other structures, resulting in use of conservative analysis and design. For the detailed analysis of concrete lining of water pressure tunnel, factors such as rock pressure and water pressure have to be considered. In this study, analysis of concrete lining was performed by using beam element method, shell element method and solid element method. Analysis results showed that the tensile stress at crown of concrete lining is greatly affected by the stability of concrete lining and the tensile stress for the concrete lining has to be evaluated for the section where maximum moment is occurred.

  • PDF

A Study on the Nonlinear Analysis of Containment Building in Korea Standard Nuclear Power Plant (한국형 원전 격납건물의 비선형해석에 관한 연구)

  • Lee, Hong-Pyo;Choun, Young-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.694-697
    • /
    • 2007
  • In this paper, a nonlinear finite element analysis program NUCAS, which has been developed for assessment of pressure capacity and failure mode for nuclear containment building is described. Degenerated shell element with assumed strain method and low-order solid element with enhanced assumed strain method is adapted to microscopic material and elasto-plastic material model, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

  • PDF

3D Finite Element Analysis of Friction Stir Welding of Al6061 Plates (Al6061-T6 판재의 마찰교반용접 3D 유한요소 해석)

  • Goo, Byeong-Choon;Jung, Hyun-Seung
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.73-79
    • /
    • 2011
  • Friction stir welding (FSW) is a solid state joining method patented in 1991 by The Welding Institute (TWI). It is widely used for joining light metals such as Al and Mg alloys. Foreign railway vehicle manufacturing companies have been applying FSW to car body welding, but domestic companies are in the beginning of feasibility study. Therefore, lots of experimental and analytical study is needed. In this study, three-dimensional finite element modeling of the friction stir welding of two Al6061-T6 plates was carried out. And temperature field and residual stresses were obtained and compared to experimental results in the literature. It is found the analytic thermal field is in a good agreement with the experimental results, but there are some differences between numerical and experimental residual stresses.

Fluid-Structure Interaction Modeling and Simulation of CMP Process for Semiconductor Manufacturing

  • Sung, In-Ha;Yang, Woo-Yul;Kwark, Ha-Slomi;Yeo, Chang-Dong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.60-64
    • /
    • 2011
  • Chemical mechanical planarization is one of the core processes in fabrication of semiconductors, which are increasingly used for information storage devices like solid state drives. For higher data capacity in storage devices, CMP process is required to show ultimate precision and accuracy. In this work, 2-dimensional finite element models were developed to investigate the effects of the slurry particle impact on microscratch generation and the phenomena generated at pad-particle-wafer contact interface. The results revealed that no plastic deformation and corresponding material removal could be generated by simple impact of slurry particles under real CMP conditions. From the results of finite element simulations, it could be concluded that the pad-particle mixture formed in CMP process would be one of major factors leading to microscratch generation.

A Dynamic Structural Analysis System for Propeller Blades (프로펠러 날개의 동적 구조해석 시스템 개발)

  • 노인식;이정렬;이현엽;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.114-120
    • /
    • 2004
  • Propeller blades have complex airfoil section type geometry and the thickness is continuously varied to both its length and cord-wise direction. in the present research, the finite element analysis program PROSTEC (Propeller Stress Evaluation Code) is developed to calculate the structural responses of propeller blades in irregular ship wake field. To represent the curved and skewed geometry of propeller blades accurately, 20-node curved solid element using the quadratic shape function is adopted. Input data for the analysis including the geometry and pressure distribution of propeller blades can be generated automatically from the propeller design program. And to visualize the results of analysis on windows system conveniently, the post processor PROSTEC-POST is developed.

Geometric Modelling of 3-Dimensional Structures for Finite Element Analysis (유한요소해석을 위한 3차원 구조물의 기하학적 모델링)

  • 이재영;이진휴
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.109-120
    • /
    • 1991
  • This paper introduces a geometric modelling system adopted in a newly developed preprocessor for finite element analysis of three dimensional structures. The formulation is characterized by hierachical construction of structural model which consists of control points, curves, surfaces and solids. Various surface and solid modelling schemes based on blending functions and boundary representation are systematized for finite element mesh generation. The modelling system is integrated with model synthesis and operations which facilitate modelling of complex structures.

  • PDF

IMPLEMENTATION OF VELOCITY SLIP MODELS IN A FINITE ELEMENT NUMERICAL CODE FOR MICROSCALE FLUID SIMULATIONS (속도 슬립모델 적용을 통한 마이크로 유체 시뮬레이션용 FEM 수치 코드 개발)

  • Hoang, A.D.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.46-51
    • /
    • 2009
  • The slip effect from the molecular interaction between fluid particles and solid surface atoms plays a key role in microscale fluid transport and heat transfer since the relative importance of surface forces increases as the size of the system decreases to the microscale. There exist two models to describe the slip effect: the Maxwell slip model in which the slip correction is made on the basis of the degree of shear stress near the wall surface and the Langmuir slip model based on a theory of adsorption of gases on solids. In this study, as the first step towards developing a general purpose numerical code of the compressible Navier-Stokes equations for computational simulations of microscale fluid flow and heat transfer, two slip models are implemented into a finite element numerical code of a simplified equation. In addition, a pressure-driven gas flow in a microchannel is investigated by the numerical code in order to validate numerical results.

Automated Modeling and Structure Analysis of Bellows (벨로우즈 자동 모델링과 구조해석)

  • Lee, Seungwoo;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.152-157
    • /
    • 2014
  • Pro-program function of Pro/E has been utilized to expedite the design process of bellows. Design parameters selected for bellows design are manipulated to obtain the shapes user specified. User-oriented function may automate the bellows design process and this function may enable to reduce the design time remarkably. Generated bellows solid model has been applied to study of design sensitivity and optimum design. Among the selected design parameters, thickness of bellows affects system response most. Control-ring installed bellows may reduce the stress and prove to be an effective element for heavy load. The finite element analysis results combined with 3D model generated by pro-program may provide the feasible design directions to the bellows designer.