• Title/Summary/Keyword: Solder

Search Result 1,163, Processing Time 0.038 seconds

Highly Reliable Solder ACFs FOB (Flex-on-Board) Interconnection Using Ultrasonic Bonding

  • Kim, Yoo-Sun;Zhang, Shuye;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • In this study, in order to improve the reliability of ACF interconnections, solder ACF joints were investigated interms of solder joint morphology and solder wetting areas, and evaluated the electrical properties of Flex-on-Board (FOB) interconncections. Solder ACF joints with the ultrasonic bonding method showed excellent solder wetting by broken solder oxide layers on solder surfaces compared with solder joints with remaining solder oxide layer bonded by the conventional thermo-compression (TC) bonding method. When higher target temperature was used, Sn58Bi solder joints showed concave shape due to lower degree of cure of resin at solder MP by higher heating rate. ACFs with epoxy resins and SAC305 solders showed lower degree of resin cure at solder MP due to the slow curing rate resulting in concave shaped solder joints. In terms of solder wetting area, solder ACFs with $25-32{\mu}m$ diameters and 30-40 wt% showed highest wetted solder areas. Solder ACF joints with the concave shape and the highest wetting area showed lower contact resistances and higher reliability in PCT results than conventional ACF joints. These results indicate that solder morphologies and wetting areas of solder ACF joints can be controlled by adjustment of bonding conditions and material properties of solder and polymer resin to improve reliability of ACF joints.

A study on the characteristics of Pb free Sn-2%Ag-x%Bi solder alloys (Pb Free Sn-2%Ag-x%Bi계 Solder의 특성에 관한 연구)

  • 흥순국;박일경;강정윤
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.148-156
    • /
    • 1998
  • The purpose of this study is to investigate the characteristics of Pb-Free Sn-2%Ag-Bi solder alloys. The solder alloys used in this study is Sn-2%Ag-(3,5,7,9%) Bi It is examined that their properties such as melting range, wettability, microstructure, microhardness, and tensile property. The addition of Bi(3,5,7,9%) lowered the melting point of the solder and the melting range was 196~203$^{\circ}C$. The wettability of the solder as equal to that of Sn-37% Pb solder. The morphology of structure did not change largely by addition of Bi. But the structure of cellular dendrite of linear type displayed. The tensile strength of the solder was superior to that of Sn-37%Pb solder. But the elongation was inferior to that of Sn-37%Pb solder. The hardness of Sn-2%Ag solder was tow times and that of Sn-2%Ag-Bi solder was three times of that in Sn-37%Pb solder. But the effect of increment of Bi content did not change largely.

  • PDF

Joining characteristics of BGA solder bump by induction heating (유도가열에 의한 BGA 솔더 범프의 접합특성에 관한 연구)

  • 방한서;박현후
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.86-88
    • /
    • 2003
  • The characteristic of induction heating solder bump(solder ball: Sn-37Pb, Sn-3.5Ag, Sn-3.0Ag-0.5Cu) has analyzed in this paper. The initial condition of induction heating depends on the time and current. The shape of lead-free solder bump is better than lead solder. The shear strength of lead solder bump has decreased with aging time. The average of shear strength of solder bump is about 10N, 11N, and 11N respectively. The lead-free solder bump's shear strength is better than lead solder and varies irregularly with aging time.

  • PDF

EXPERIMENTAL STUDY ON LASER AND HOT AIR REFLOW SOLDERING OF

  • Tian, Yanhong;Wang, Chunqing
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.469-474
    • /
    • 2002
  • Laser and hot air reflow soldering of PBGA solder ball was investigated. Experimental results showed that surface quality and shear strength of solder bumps reflowed by laser was superior than the solder bumps reflowed by hot air, and the microstructure inside the solder bumps reflowed by laser was much finer. Analysis on interfacial reaction showed that eutectic solder reacted with Au/Ni/Cu pad shortly after the solder was melted. Interface of solder bump reflowed by laser consists of a continuous AuSn$_4$ layer and remnant Au element. Needle-like AuSn$_4$ grew sidewise from interface, and then spread out to the entire interface region. A thin layer of Ni$_3$Sn$_4$ intermetallic compound was found at the interface of solder bump reflowed by hot air, AuSn$_4$ particles distributed inside the whole solder bump randomly. It is the combination effect of the continuous AuSn$_4$ layer and finer eutectic microstructure inside the solder bump reflowed by laser that resulted in higher shear strength.

  • PDF

A Study on Characteristics of Sn-37Pb and Sn-4.0Ag-0.5Cu Solder Joints as Various A:V Ratio (A:V Ratio 변화에 따른 Sn-37Pb, Sn-4.0Ag-0.5Cu Solder 접합부의 특성 연구)

  • Han, Hyun-Joo;Lim, Seok-Jun;Moon, Jung-Tak;Lee, Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.67-73
    • /
    • 2001
  • To investigate the relationships of solder joint characteristics with solder composition and A:V ratio (solder volume per pad area), Sn-37Pb and Sn-4.0Ag-0.5Cu solder balls with 330, 400, 450 and $457{\mu}{\textrm}{m}$ size were reflowed on same substrate. Sn-37Pb and Sn-4.0Ag-0.5Cu was reflowed at $220^{\circ}C$ and $240^{\circ}C$ respectively by IR-type soldering machine. As a result of reflowed solder- ball diameter(D) and height(H) measurement, D/H was decreased with solder ball size increment in range of 330~450 ${\mu}{\textrm}{m}$. But, D/H was increased in the solder joint for 457 ${\mu}{\textrm}{m}$ size, it was caused possibly by decrement of solder ball height increment compared with solder volume increment. As a result of shear and pull test, joint strength with A:V ratio was high. Joint strength of Sn-4.0Ag-0.5Cu was higher than Sn-37Pb. However, Sn-37Pb had more stable solder joint of small standard deviation. A thick and clean scallop type Ni-Cu-Sn intermetallic compound layer was formed in high A:V ratio and Sn-4.0Ag-0.5Cu solder joint interface.

  • PDF

Prediction of Thermal Fatigue Life on $\mu$BGA Solder Joint Using Sn-3.5Ag, Sn-3.5Ag-0.7Cu, and Sn-3.5Ag-3.0In-0.5Bi Solder Alloys (Sn-3.5Ag, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-3.0In-0.5Bi Solder를 이용한 $\mu$BGA Solder접합부의 열피로 수명예측)

  • 김연성;김형일;김종민;신영의
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • This paper describes the numerical prediction of the thermal fatigue life of a $\mu$BGA(Micro Ball Grid Array) solder joint. Finite element analysis(FEA) was employed to simulate thermal cycling loading for solder joint reliability. Strain values, along with the result of mechanical fatigue tests for solder alloys were then used to predict the solder joint fatigue life using the Coffin-Manson equation. The results show that Sn-3.5mass%Ag solder had the longest thermal fatigue life in low cycle fatigue. Also a practical correlation for the prediction of the thermal fatigue life was suggested by using the dimensionless variable ${\gamma}$, which was possible to use several lead free solder alloys for prediction of thermal fatigue life. Furthermore, when the contact angle of the ball and chip has 50 degrees, solder joint has longest fatigue life.

Printing Morphology and Rheological Characteristics of Lead-Free Sn-3Ag-0.5Cu (SAC) Solder Pastes

  • Sharma, Ashutosh;Mallik, Sabuj;Ekere, Nduka N.;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.83-89
    • /
    • 2014
  • Solder paste plays a crucial role as the widely used joining material in surface mount technology (SMT). The understanding of its behaviour and properties is essential to ensure the proper functioning of the electronic assemblies. The composition of the solder paste is known to be directly related to its rheological behaviour. This paper provides a brief overview of the solder paste behaviour of four different solder paste formulations, stencil printing processes, and techniques to characterize solder paste behaviour adequately. The solder pastes are based on the Sn-3.0Ag-0.5Cu alloy, are different in their particle size, metal content and flux system. The solder pastes are characterized in terms of solder particle size and shape as well as the rheological characterizations such as oscillatory sweep tests, viscosity, and creep recovery behaviour of pastes.

Study on the Prediction of Fatigue Life of BGA Typed Solder Joints (BGA 형태 솔더 접합부의 피로 수명 예측에 관한 연구)

  • Kim, Seong-Keol;Kim, Joo-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.137-143
    • /
    • 2008
  • Thermal fatigue life prediction for solder joints becomes the most critical issue in present microelectronic packaging industry. And lead-free solder is quickly becoming a reality in electronic manufacturing fields. This trend requires life prediction models for new solder alloy systems. This paper describes the life prediction models for SnAgCu and SnPb solder joints, based upon non-linear finite element analysis (FEA). In case of analyses of the SnAgCu solder joints, two kinds of shapes are used. As a result, it is found that the SnAgCu solder has longer fatigue life than the SnPb solder in temperature cycling analyses.

Simulation of Thermal Fatigue Life Prediction of Flip Chip with Lead-free Solder Joints by Variation in Bump Pitch and Underfill (무연 솔더 접합부을 갖는 플립칩에서의 언더필 및 범프 피치 변화에 의한 열 피로 수명 예측 해석)

  • Kim, Seong-Keol;Kim, Joo-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.157-162
    • /
    • 2010
  • This paper describes the thermal fatigue life prediction models for 95.5Sn-4.0Ag-0.5Cu solder joints of Flip chip package considering Under Bump Metallurgy(UBM). A 3D Finite element slice model was used to simulate the viscoplastic behavior of the solder. For two types of solder bump pitches, simulations were analyzed and the effects of underfill packages were studied. Consequently, it was found out that solder joints with underfill had much better fatigue life than solder joints without underfill, and solder joints with $300{\mu}m$ bump pitch had a longer thermal fatigue life than solder joints with $150{\mu}m$ bump pitch. Through the simulations, flip chip with lead-free solder joints should be designed with underfill and a longer bump pitch.

Characterization of the Sn-Ag-Cu and Sn-Cu Lead-free Solder by adding P (P의 함량에 따른 Sn-Ag-Cu 및 Sn-Cu 무연솔더의 특성평가)

  • 신영의;황성진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.549-554
    • /
    • 2003
  • The purpose of this paper is to investigate the solder properties by the change of P mass percentage. Tension test, wetting balance test, spread test, and analysis of intermetallic compound after isothermal aging of Sn-2.5Ag-0.7Cu-0.005P, Sn-2.5Ag-0.7Cu-0.01P, Sn-2.5Ag-0.7Cu-0.02P, Sn-0.7Cu-0.005P were performed. Adding P in the solder alloys resulted in improvement of tensile strength, reduction of intermetallic compound growth, reduction of oxidization in fusible solders under wave soldering. After comparing solder alloy containing P with tin-lead eutectic solder alloy, P contained solders alloys showed much better solder properties than eutectic solder alloy. Furthermore, this solder alloy presented remarkable properties than any other lead-free solder alloy.