• 제목/요약/키워드: Solar tracking algorithm

검색결과 146건 처리시간 0.026초

Development of a Novel Tracking System for Photovoltaic Efficiency in Low Level Radiation

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.405-411
    • /
    • 2010
  • This paper proposes a novel tracking algorithm considering radiation to improve the power of a photovoltaic (PV) tracking system. The sensor method used in a conventional PV plant is unable to track the sun's exact position when the intensity of solar radiation is low. It also has the problem of malfunctions in the tracking system due to rapid changes in the climate. The program method generates power loss due to unnecessary operation of the tracking system because it is not adapted to various weather conditions. This tracking system does not increase the power above that of a power of tracking system fixed at a specific position due to these problems. To reduce the power loss, this paper proposes a novel control algorithm for a tracking system and proves the validity of the proposed control algorithm through a comparison with the conventional PV tracking method.

Comparative Study and Simulation of P&O Algorithm using Boost Converter for a Photovoltaic System

  • Ganzorig, Batdelger;Song, Han-Jung
    • 한국산업융합학회 논문집
    • /
    • 제22권4호
    • /
    • pp.395-403
    • /
    • 2019
  • The excessive need of power is creating an unbalance situation in power sector, where solar energy is one of the best solutions among other energy sources to mitigate this demand. It is globally accepted because of its flexibility and long life compared to others. A lot research is going on to enhance the energy efficiency by introducing photovoltaic (PV) power generation technology, but still irradiation of PV power is the major problem. In this manuscript, we have designed PV module using single diode methodology and also the solar conversion efficiency was boosted with maximum power point tracking (MPPT) by using perturb and observe (P&O) algorithm. The simulation was done for $1000W/m^2$ and $800W/m^2$ at solar irradiance in cell temperature of 25C and 40C degree levels in PSIM tool.

A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor

  • Senjyu Tomonobu;Shirasawa Tomiyuki;Uezato Katsumi
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.617-621
    • /
    • 2001
  • This paper presents a maximum power point tracking algorithm for Photovoltaic array using only instantaneous output current information. The conventional Hill climbing method of peak power tracking has a disadvantage of oscillations about the maximum power point. To overcome this problem, we have developed a algorithm, that will estimate the duty ratio corresponding to maximum power operation of solar cell. The estimation of the optimal duty ratio involves, finding the duty ratio at which integral value of output current is maximum. For the estimation, we have used the well know Lagrange's interpolation method. This method can track maximum power point quickly even for changing solar insolations and avoids oscillations after reaching the maximum power point.

  • PDF

A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor

  • Senjyu, Tomonobu;Shirasawa, Tomiyuki;Uezato, Katsumi
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.155-161
    • /
    • 2002
  • This paper presents a maximum power point tracking algorithm for Photovoltaic array using only instantaneous output current information. The conventional Hill climbing method of peak power tracking has a disadvantage of oscillations about the maximum power point. To overcome this problem, we have developed an algorithm that will estimate the duty ratio corresponding to maximum power operation of solar cell. The estimation of the optimal duty ratio involves, finding the duty ratio at which integral value of output current is maximum. For the estimation, we have used the well know Lagrange's interpolation method. This method can track maximum power point quickly even for changing solar isolation and avoids oscillations after reaching the maximum power point.

태양전지 배열기의 최대 전력 추적 알고리즘 개발

  • 박희성;장성수;장진백;박성우;이종인
    • 항공우주기술
    • /
    • 제4권1호
    • /
    • pp.77-85
    • /
    • 2005
  • 최대 전력 추적 기법은 온도와 일사량의 조건 및 부하의 전기적 특성 변화에 관계없이 태양전지 배열기의 출력 전력을 최대화하기 위한 광발전 시스템에 사용된다. 본 논문에서는 저궤도 위성을 위한 최대 전력 추적 기법을 제안한다. 본 논문에서 제안한 최대 전력추적 기법은 전력의 계산이 불필요하여 간단한 아날로그 회로만을 이용한 하드웨어 구현이 가능하다. 본 연구에서는 태양전지의 특성을 변화 시킬 수 있는 여러 조건을 가정하여 시뮬레이션과 실험을 통해 제안한 최대 전력 기법의 타당성을 입증하였다.

  • PDF

태양전지 최대전력점 추종제어를 위한 퍼지 제어기의 FPGA구현 (FPGA Implementation of Fuzzy Logic Controller for Maximum Power Point Tracking in Solar Power System)

  • 이우희;김형진;이흥주
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.106-111
    • /
    • 2007
  • In this study, we designed a digital fuzzy logic controller based on FPGA and microprocessor for MPPT of the sofar power generation system. A fuzzy algorithm to control the power tracking function of a boost converter has been built into the FPGA, and applied to the small scaled solar power generation system. The embodied controller showed a stable operation characteristic with the small output voltage ripple for the intensity change of solar radiation. This result proves that the implementation of the power tracking controller using FPGA is an effective way compared to the existing one using microprocessor.

Control of a Novel PV Tracking System Considering the Shadow Influence

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.524-529
    • /
    • 2012
  • This paper proposes a novel control strategy of a PV tracking system considering the shadow influence. If distance of between PV arrays is not enough, shadow can be occurred to PV module. In PV system, if shadow is occurred to PV modules then PV modules operates reverses bias, and will eventually cause hot-spot and loss. To reduce loss by shadow influence, this paper proposes shadow compensation algorithm using distance between arrays and shadow length of array. The distance between arrays is calculated by using azimuth of solar, and length of array shadow is calculated using by altitude of solar. The shadow compensation algorithm proposed in this paper compares distance between arrays and length of array shadow. When the shadow length is longer than the distance between arrays, the algorithm adjusts altitude of array to avoid the shadow effects. The control algorithm proposed in this paper proves validity through compared with conventional algorithm and proposes experiment result.

다이나믹 MPPT를 적용한 최대전력지점추종 알고리즘 (The New MPPT Algorithm for the Dynamic MPPT Efficiency)

  • 고석환;정영석;소정훈;황혜미;주영철
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.1-10
    • /
    • 2014
  • The efficiency of the maximum power point tracking(MPPT) of inverter which is used in grid-connected photovoltaic systems is changed according to dynamic environment conditions. Hence, this paper evaluates the performance of the proposed method and other MPPT algorithm on the basis of European Efficiency Test(EN50530). The modeling of MPPT algorithm is made by the Matlab & Simulink. In the result of simulation, the more control period is shorter, the more MPPT efficiency is higher. Also, the Proposed MPPT algorithm has higher performance than other MPPT algorithm with no regard to control period.

일사량 변화에 다른 전력손실을 고려한 새로운 태양광 추적 시스템 제어 (A Novel PV Tracking System Control Considering the Power Loss with Change of Insolation)

  • 박기태;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제22권6호
    • /
    • pp.89-99
    • /
    • 2008
  • 본 논문은 태양광 발전 추적 시스템의 발전량을 증가시키기 위해 일사량 급변에 대한 추적 장치 기동 시 전력소모를 고려한 새로운 추적 알고리즘을 제시한다. 종래의 태양광 발전에 사용되는 센서방식의 추적시스템은 구름 및 안개 등 급변하는 기후환경에 의해 추적 장치의 오동작의 문제점으로 태양의 정확한 추적이 불가능하다. 또한 프로그램 방식의 경우에는 기후 환경의 외부 요인에 대응하지 못함으로서 추적 장치의 불필요한 동작으로 인한 에너지소비가 발생된다. 이러한 이유로 태양 추적 장치가 실시간으로 태양의 방위각 및 고도 각을 추정하는 경우에도 실제 태양광 발전량은 특정한 위치에 고정되어 있는 경우보다 발전량이 증가하지 못한다. 본 논문에서는 이러한 전력소모를 줄이기 위한 추적시스템의 새로운 제어 알고리즘을 제시한다. 또한 종래의 태양광 추적 방식과 제시한 방법의 효율을 분석하고, 실증연구를 통하여 제시한 알고리즘의 타당성을 입증한다.

가변 스텝 P&O 기반 전압제어 MPPT 알고리즘에 관한 연구 (A Novel Voltage Control MPPT Algorithm using Variable Step Size based on P&O Method)

  • 김지찬;차한주
    • 전력전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.29-36
    • /
    • 2020
  • In this study, a variable step algorithm is proposed on the basis of the perturb and observe method. The proposed algorithm can follow the maximum power point (MPP) quickly when solar irradiance changes rapidly. The proposed technique uses the voltage change characteristic at the MPP when the environment changes because of insolation or temperature. The MPP is tracked through the voltage control using a variable step method. This method determines the sudden change of solar irradiance by setting the threshold value and operates in fast tracking mode to track the MPP rapidly. When the operation point reaches the MPP, the mode switches to the variable step mode to minimize the steady state error. In addition, the output disturbance is decreased through the optimization of the control method design. The performance of the proposed MPPT algorithm is verified through simulation and experiment.