• Title/Summary/Keyword: Solar radiation protection

Search Result 27, Processing Time 0.034 seconds

Protection Efficiency from Solar Radiation and Ultraviolet Radiation by Fabrics (소재에 따른 자외선.복사열 차단력)

  • 김경수;최정화
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.10
    • /
    • pp.77-85
    • /
    • 2002
  • This study was conducted to evaluate the efficiency of various fabrics in protecting from solar radiation and ultraviolet radiation(UV). Six kinds of fabrics were selected and examined in singles or doubles. It was studied how the materials and the thickness of air layer between the fabric and the floor affected the protection efficiency of fabrics from sunlight. The results were as followes; 1) Protection from solar radiation: In the case of over 2 cm air layer, doubled fabric composed of aluminum coating-nylon and white or black polyester/cotton(T/C) was the most protective(p<0.001). In the case of 0 cm air layer, the case without fabric and white T/C were more effective(p<0.001). And the thicker the air layer the more effective the protection. 2) Protection from UV : Doubled fabric composed of aluminum coating-nylon and black T/C was the most protective(p<0.001) and the thinner the air layer the more effective the protection(p<0.001).

Development of the sunshade hat with a large brim(Part I) -Development and test with manikins- (양산형 일광차단모의 개발(제1보) -고안 및 마네킹 착용실험-)

  • 김경수;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.8
    • /
    • pp.1177-1185
    • /
    • 2002
  • This study was to develop the sunshade hat which reduced stress from solar radiation and ultraviolet radiation (UV), in order to keep the farmer's health and to promote their work efficiency. The new sunshade hat with a large brim, special structure for ventilation, stability and portability was designed and tested with manikin heads outdoors. Two newly designed sunshade hats(A, B) and three existing hat were tested Sunshade hat A made of double fabric with aluminum coating-nylon and black cotton cloth with a polyester mix(T/C) was the most protective from solar radiation. Sunshade hat B with larger brim was the most protective from ultraviolet radiation, even though it was made of aluminum coating-nylon single fabric.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

Development of the Sunshade hat with a large brim (Part II) - Human trial test at outdoors - (양산형 일광차단모의 개발(제2보) -실외 인체착용시 복사열 및 자외선의 차단효과-)

  • 최정화;김경수
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.414-421
    • /
    • 2004
  • To reduce farmer's stress from solar radiation and ultraviolet radiation(UV), the sunshade hat with a large brim and special structure for ventilation was developed and tested with manikin heads outdoors at previous study(Kim and Choi, 2002). To evaluate the protection efficiency of the sunshade hat, human trial test was performed at outdoors. The results were as follows; Skin temperatures(7 sites), heart rate, temperature inside the hats, temperature and relative humidity inside clothing on the back in wearing developed sunshade hat were significantly lower than those in wearing the controlled hat. In subjective sensation, subjects answered to feel significantly hotter, more humid and more uncomfortable in wearing the controlled hat. But relative humidity inside the hats was significantly higher in wearing developed hat. In rectal temperature, there were no significant differences between two hats.

Protective Measures From Solar Ultraviolet Radiation for Beach Lifeguards in Tuscany (Italy): Shade and Clothing Strategies

  • Daniele Grifoni;Giulio Betti;Andrea Bogi;Lucia Bramanti;Alessandra Chiarugi;Bernardo Gozzini;Marco Morabito;Francesco Picciolo;Francesco Sabatini;Lucia Miligi
    • Safety and Health at Work
    • /
    • v.13 no.4
    • /
    • pp.421-428
    • /
    • 2022
  • Background: The exposure to solar ultraviolet radiation is a significant risk factor generally underestimated by outdoor workers and employers. Several studies have pointed out that occupational solar exposure increased eye and skin diseases with a considerable impact on the lives and productivity of affected workers. The main purpose of this study was to evaluate the effectiveness against ultraviolet radiation of some measures recently undertaken for the protection of lifeguards in a coastal area of Tuscany. Methods: Different shading structures (gazebos and beach umbrella) were tested during a sunny summer's day on a sandy beach by means of two radiometers; the UV protection offered by some T-shirts used by lifeguards was also tested in the laboratory with a spectrophotometer. Results: The analysed shading structures strongly reduced the ultraviolet radiation by up to 90%, however a not always negligible diffuse radiation is also present in the shade, requiring further protective measures (T-shirt, sunglasses, sunscreen, etc.); the tested T-shirts showed a very good-excellent protection according to the Australian/New Zealand standard. Conclusion: Results obtained in this study suggest how the adoption and dissemination of good practices, including those tested, could be particularly effective as a primary prevention for lifeguards who are subjected to very high levels of radiation for long periods.

Cooling Energy Saving System using Solar Heat Protection Dvices (일사차단용 설비를 이용한 냉방 에너지 절약 방안)

  • Jeong, Ky-Bum;Choi, Sang-Gon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.108-115
    • /
    • 2010
  • Global warming and heat island make the outdoor air temperature ascend. Tall office buildings are covered with glass window facades as a design aspect and the portion of window area to facade area is increasing. Hence, cooling load for solar radiation passing through glass window is rising. Cooling air to a certain room is supplied equally despite the face of the room in most office buildings. Especially, the west part of the office cannot maintain the required temperature that occupant needs because of the solar heat coming through windows.?In this study, we projected the water spray system to reduce the solar heat transfer and to reflect the solar ray through windows. We perform the experiments to evaluate the performance of the solar heat protection devices. We measured the room temperature of two separated office rooms for solar heat control devices. The investigation's results show that the water spray system is sufficient to the coated glass and the venetian blinds for the decrease of the solar heat inflow.

Development of Movable Sunshade Tent (이동식 천막형 일광차단장비의 개발)

  • 김경수;최정화
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.1
    • /
    • pp.99-113
    • /
    • 2004
  • To protect farmers from solar radiation and UV, the movable sunshade tent was designed and its protection efficiency was measured in the artificial chamber and outdoors. Sunshade tent and the existing farmer's hat were examined. The results were as followes; Heart rate, total body weight loss and temperature of clothing microclimate on the chest and the back were lower in using sunshade tent than those in wearing existing hat in two experiments. In subjective sensation, subjects answered to feel significantly hotter and more uncomfortable in wearing existing hat in two experiments. Rectal temperature was significantly lower using the sunshade hat in experiment at outdoors(p<0.001).

자연 에너지 이용과 환경건축을 위한 신기술

  • Lee, Gyeong-Hoe
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.107-119
    • /
    • 1993
  • This paper is to refine the concept of utilizing natural energy, and to introduce new technologies of building energy control. For the global environment protection, it is essential to turn attention to latent capacity of natural renewable energy. Especially the concept of 'Environmental Architecture' is very important from this viewpoint. This paper reviews many of new technologies for environmental architecture developed recently : TIM, high effective solar radiation control strategy of glazing, new passive cooling and heating system etc. The design application of the technology has been introduced.

  • PDF

Effects of Enhanced Ultraviolet-B Radiation on Plants (오존층 파괴에 의한 자외선 증가가 식물에 미치는 영향)

  • Hak Yoon Kim;Moon Soo Cho
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.197-206
    • /
    • 2001
  • The depletion of stratospheric ozone is regarded as a major environmental threat to plant growth and ecosystem. The ozone depletion has caused plants to be exposed to an increased penetration of solar ultraviolet-B (UV-B) radiation in the 280-320 nm wavelength range. Enhanced UV-B radiation may have influence on plants biological functions in many aspects including inhibition of photosynthesis, DNA damage, lipid peroxidation, changes in morphology, phenology, and biomass accumulation. To cope with the damage by UV radiation, plants have evolved to have protective mechanisms, such as photorepair, accumulation of UV-absorbing compounds, leaf thickening and activation of antioxidative enzymes. The objective of this review is to address the effects of enhanced UV-B on plant growth, UV-B action mechanisms and protection and protection mechanisms in plants.

  • PDF

Immune Protection Factor of Sunscreens in Humans is Dependent on Protection from UVA and Cannot be Predicted from the Sun Protection Factor

  • Halliday, Gary M.;Poon, Terence S.C.;Damian, Diona L.;Barnetson, Ross St.C.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.236-239
    • /
    • 2002
  • Sunscreens have been advocated as an important means of preventing skin cancer. UV-induced immunosuppression is important for skin cancer development, yet the effectiveness of sunscreens in protecting the human immune system from UV radiation is unclear. The only currently accepted method of sunscreen rating is the Sun Protection Factor (SPF) based on prevention of erythema. We developed an in vivo non-invasive method for evaluating protection of the human immune system from UV radiation based on recall contact sensitivity to nickel, a common allergen. Using this system we showed that broad-spectrum sunscreens provide greater protection to the immune system than sunscreens which protect from UVB only. UVA was found to be immunosuppressive. We developed this technique to enable the study of solar simulated UV radiation dose responses and determined Immune Protection Factors (IPFs) for six commercially available sunscreens based on limits of protection from the dose response data. We found that the IPF did not correlate with the SPF and that protection from erythema therefore cannot be used to predict protection of the immune system. However, IPF was significantly correlated to the UVA protective capability of the sunscreens, indicating that sunscreen protection from UVA is important for prevention of immunosuppression. We recommend that sunscreens should be rated against their immune protective capability to provide a better indication of their ability to protect against skin cancer.

  • PDF