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Abstract
Recently, as the importance of environmental protection has emerged, interest in new and renewable en-

ergy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate
among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and
eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. How-
ever, although climate prediction is essential since solar power is affected by weather and climate change, solar
radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Ad-
ministration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy
operation plan, and it is very important because it can be used not only in solar power but also in other fields such
as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accu-
racy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity,
and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models.
The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN
series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series
cross-validation.

Keywords: solar radiation, XGBoost, CatBoost, simple RNN, LSTM, GRU, time series cross-
validation

1. Introduction

Korea is highly dependent on fossil fuels, accounting for 85% of the country’s total energy con-
sumption. The fossil fuel-based energy supply system has low sustainability due to price volatility,
limitation of fuel reserves, and environmental problems, which are spurring the development of the
new renewable energy industry to generate steep growth. In particular, solar energy has the highest
production rate of 38% for new and renewable energy in Korea due to its infinite resources, ease of
installation, and eco-friendly features such as low noise emission levels and less pollutants. However,
solar power generation requires advanced power generation prediction technology due to unstable
energy supply from the influence of the weather.

Recently, as a solution to this, the new renewable energy industry is showing a rapid growth trend
in quantity. In particular, the solar energy field has infinite resources, easy installation and main-
tenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during
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power generation, accounting for the highest production rate of 38% of new renewable energy in Ko-
rea. Moreover, although the cost of solar power generation is the highest among the currently supplied
renewable energy sources, the cost of solar power is decreasing every year through technological de-
velopment, and the cost of fossil fuel is expected to be the same within a few years. (Lee et al., 2018)
This is expected to increase the proportion of solar energy generation in the future.

However, since solar power generation is affected by weather and climate change, stable energy
supply and demand are impossible compared to fossil fuels. Climate prediction is essential to com-
pensate for the shortcomings of this solar power supply system. Solar radiation, which is closely
related to solar power generation, is not currently predicted by the Korea Meteorological Administra-
tion. Therefore, solar radiation prediction can be the basis for establishing a reasonable new renewable
energy operation plan, and this is very important because this can also be used in other fields such as
power consumption prediction.

Various methods are being attempted at home and abroad to predict solar radiation. Solar radiation
is the amount of energy when solar energy arrives to the ground, and it is difficult to find a trend within
solar radiation. Solar energy tends to decrease from the actual value due to various weather variables
such as water vapor and cloudiness as it passes through the Earth’s atmosphere, so it is necessary to
consider exogenous variables to predict solar radiation.

The meteorological variables mainly considered in predicting solar radiation include tempera-
ture, relative humidity, and cloudiness. Suh et al. (2018) compared the time series models ARIMA,
ARIMAX, SEASONAL ARIMA, SEASONAL ARIMA, SEASONAL ARIMAX, ARIMA-GARCH,
SEASONAL ARIMA-GARCH, SEASONAL ARIMA-GARCH, SEASONAL ARIMAX-GARCH,
and SEASONAL ARIMAX-GARCH. It was confirmed that ARIMAX, seasonal ARIMAX, and sea-
sonal ARIMAX-GARCH considering temperature and humidity as exogenous variables showed bet-
ter performance than time series models without considering exogenous variables. Suh et al. (2018);
Elizabeth et al. (1994) predicted global solar radiation by using various weather variables including
temperature and humidity. Elizondo et al. (1994) and Rehman et al. (2008) predicted solar radiation
using an ARN (Artificial Neural Network) model using the average temperature, maximum temper-
ature, and relative humidity of a day to predict solar radiation in AbhCity, Saudi Arabia. (Rehman
and Mohandes, 2008) Alam et al. (2009) considered the latitude (lat), longitude (long), altitude (alt),
time, months of the year (moy), air temperature (at), relative humidity (rh), rainfall (rf), wind speed
(ws), and net long wavelength (lw) as input parameters for ANN model. Alam et al. (2009); Sahm
(2017) compared the prediction accuracy of the time series model by generating variables of out-
of-the-atmosphere solar radiation using meteorological elements, latitudes, and longitudes for solar
radiation prediction. Sahm (2017)

Juliang (2018) compared the accuracy of the Support Vector Machine (SVM) and Extreme Gradi-
ent Boosting (XGBoost) using the Daily global solar radiation, maximum and minimum air tempera-
tures (Tmax and Tmin) and transformed precipitation (Pt, 1 for rainfall , 0 and 0 for rainfall = 0) in
estimating daily solar radiation. As a result, the XGBoost model had comparable prediction accuracy
with the SVM model. (Fan et al., 2018) Also, Fan et al. (2020) assessed the performance of SVM
and four tree-based soft computing models (M5Tree, RF, XGBoost and CatBoost) for predicting daily
horizontal radiation (Rd) on in various climatic rons (Scenario 1: local, Scenarios 2 and 3: extrinsic)
of China. Comprehensively considering prediction accuracy, generalization capability and computa-
tional efficiency, CatBoost is the best model to develop general models. Fan et al. (2020); Pang et
al. (2020) figured out that the solar radiation prediction using the RNN model has a higher accuracy
compared with the ANN model. Besides, in the case of relatively high cloud cover during the training
period, results were severely biased from the measured values in the test period, suggesting that cloud
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cover could have a significant impact on prediction accuracy (Pang et al., 2020).
As with the above-mentioned models, various methods have been applied to improve the accuracy

of predicting solar radiation in recent studies. In this paper, we would like to compare a total of seven
models, which were frequently used in the above paper: Boosting series models (CatBoost, XGBoost),
and RNN series models (Simple RNN, LSTM, GRU). The data used were ASOS (Automated Synoptic
Observation System) from March 1, 2017 to February 28, 2022 at 42 points in Korea. A model was
selected by applying various hyper parameters, and the final model performance was evaluated by
MAE and RMSE.

Section 2 introduces the ARIMAX, XGBoost, CatBoost, Simple RNN, LSTM, and GRU models
used for solar radiation prediction. Section 3 explains the weather data and preprocessing method
used in this study, and compares and analyzes the prediction results by applying the above- mentioned
model. Section 4 will propose conclusions and future research directions.

2. Methodology

This section introduces the various methods used in the study. In this paper, we use Autoregressive
Integrated Moving Average Exogenous Variable Models (ARIMAX), the classic time series models,
to compare how well the finally considered model predicts over the classical model. Compare the
Boosting family models XGBoost, CatBoost, and the existing RNN family-based models Simple
RNN, LSTM, GRU.

This section introduces the various methods used in the study. In this paper, we use Autoregressive
Integrated Moving Average Exogenous Variable Models (ARIMAX), the classic time series models
to compare how well the models considered predict than the classic models. Finally, we compare
the Boosting family models XGBoost, CatBoost, and the existing RNN family-based models Simple
RNN, LSTM, GRU.

2.1. ARIMAX (Auto-regressive integrated moving average with exogeneous variable)

The ARIMAX model adds exogenous variables to the ARIMA model. Like the ARIMA model, it
has been used as a prediction model in various fields. When the degree of ARIMA is p, d, q and the
number of exogenous variables is k, the exogenous variables are denoted as xit, and the ARIMAX
(p, d, q) model is as follows

φp (B) (1 − B)d (Yt − µ) = θq (B) εt +

k∑
i=1

βixit where εt ∼WN
(
0, σ2

)
, (2.1)

where φp(B) corresponds to the equation for the autoregressive model, p denotes the order of the
current model, θq(B) is the equation for the moving average model, q represents the order of the
current model, d denotes the equation containing the first difference, εt corresponds to an error term
or white noise, and βi is a coefficient of the exogenous variable, xit.

2.2. XGBoost (extreme gradient boosting)

The XGBoost model is a decision tree-based algorithm that improves gradient boosting and is used
in various studies. Obiora et al. (2021); Huang et al. (2021); Rocha and Santos (2022) Gradient
boosting is a machine learning technique that increases predictive power by sequentially generating
a model by supplementing the predictive error of the previous tree with the slope-lowering method
using gradient descent. Through the repetition process of creating a new prediction model by focusing
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on poorly predicted individuals, a strong model is generated through a combination of several weak
models. The XGBoost model supports parallel operations, so it is fast, can be used for very large
models, and has the advantage that overfitting does not occur well. However, there is a disadvantage
that it is complicated due to the large number of parameters (Kim and Kim, 2022). The XGBoost
model consists of M decision trees, as in the following expression, where f denotes one decision tree,
and F denotes a function of all decision trees:

Yi =

M∑
m=1

fm
(
x(i)

)
, fm ∈ F. (2.2)

In the regression process, the model is expressed by the following equation:

Obj (θ) =

n∑
i=1

l (yi,Yi) +

M∑
m=1

Ω ( fm) , θ = ( f1, f2, . . . , fm) e, (2.3)

where l represents the loss function, and Ω indicates the regulation to prevent overfitting. The regula-
tion equation follows

Ω ( f ) = γT +
1
2
λ

T∑
j=1

ω2
j , (2.4)

where T denotes the number of nodes in the decision tree, Ω represents a weight vector, and γ and
λ are penalty elements. In this paper, the hyperparameters are optimized to have excellent predictive
power by adjusting the maximum depth, learning rate, and parameters.

2.3. CatBoost (unbiased boosting with categorical features)

The CatBoost model is a boosting-based model along with XGBoost that creates a tree with Level-
wise. In addition, the overall aspect of the existing boosting process is similar, but there are some
differences. If the existing boosting model performed residual calculations on all training data col-
lectively, the model takes some of the residual calculations and then makes a model, and the residual
of the subsequent data goes through the process of using the predicted value with this model. In
addition, it has the advantage of preventing Overfitting by randomly selecting data through Random
Permutation and making trees diverse. (Fan et al., 2020) This is as follows:

x̂k
i =

∑n
j=1

[
xi

j = x j
k

]
◦ y j + αP∑n

j=1

[
xi

j = x j
k

]
+ α

, (2.5)

where α is corresponding weight, P denotes a prior value, xk = (x1
k , . . . , x

m
k ) denotes random vector of

m features an ykINR denotes corresponding label.
Unlike other ensemble algorithms that use GridSearchCV or RandomizedSearchCV to find opti-

mal hyperparameters, this model has optimized initial hyperparameter values, so no separate parame-
ter tuning procedure is required.

2.4. RNN (recurrent neural network)

A recurrent neural network refers to a neural network having one or more cyclic layers within a hidden
layer. It is mainly used for ordered time series data, and the corresponding data is input and output is



Solar radiation forecasting using boosting decision tree and recurrent neural networks 713

obtained in order through one network. Weights and biases are repeatedly used for each time zone’s
data. In addition, previous data affects the results because the output of the layer is received and used
as input again. These RNNs are characterized by unlimited input and output lengths, and can form
various types of networks by changing their structures. Simple RNN, the model used in this paper, is
the simplest form of RNN layer, and the structure is shown in the figure below (Sorkun et al., 2017).

However, RNNs have disadvantages such as Gradient Vanishing or Exploding because the models
are backpropagation algorithms over time, and the problem is Song-Term Dependency, where learning
ability decreases as input data grows.

2.5. LSTM (long short term memory)

The Long Short-Term Memory (LSTM) model was developed in 1997 by Hawkrite and Schmitthu-
ber Hochreiter and Schmidhuber (1997); Kumari and Toshniwal (2019) This model is proposed to
solve the Long-Term Dependency problem of the Basic RNN model and used in several time series
prediction studies (Sorkun et al., 2020). LSTM also has a chain-like structure like Basic RNN, but
each iteration module has a different structure. That is, instead of a simple layer, four layers are con-
figured to exchange information with each other in a special manner. The core of LSTM is the cell
state, which corresponds to the ‘memory’ part. The cell state is controlled by a gate, and the model
consists of an input gate, a forget gate, and an output gate. In other words, if this is summarized as
one equation, it is as follows:

f = σ
(
xtw

( f )
x + ht−1w( f )

h + b( f )
)
,

g = tanh
(
xtw

(g)
x + ht−1w(g)

h + b(g)
)
,

i = σ
(
xtw(i)

x + ht−1w( f )
i + b(i)

)
,

o = σ
(
xtw(o)

x + ht−1w(o)
h + b(o)

)
,

ct = f
⊙

ct−1 + g
⊙

i, (2.6)

ht = o
⊙

tanh (ct) .

o is output gate, ht is output gate multiplied by tanh (ct) to generate ht, which is hidden state. f is a
forget gate, which is multiplied by ct−1 to generate a memory cell ct. It then adds g, a new information
to remember, and selectively accepts memories rather than acceptings all memories at the input gate,
i. The LSTM receives information from the previous hidden state and the previous input from the
forget gate, which is a sigmoid layer that determines which information to discard and transmits it to
the cell state. The cell state is then updated based on the information received from the input gate and
the forget gate. But LSTM has the limitation of too-heavy structures and many learning parameters.

2.6. GRU (Gated Recurrent Unit)

The Gated Recurrent Unit (GRU) was proposed by Cho et al in 2014 for similar reasons as the LSTM
model, which further simplified the Cell of the Time-Step constituting the LSTM to reduce the com-
putation volume (Cho et al., 2014). This model has a slightly faster learning rate than LSTM, and
when the amount of data is small, GRUs with a small amount of parameters are known to have better
predictive performance than LSTM (Boubaker et al., 2021). GRU integrates the three gates of LSTM
into two, and the cell state and the hidden state into one hidden state. As a result, the number of learn-
ing parameters is reduced, making it relatively light. The computation process of GRU is performed
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Figure 1: Gulli and Pal (2017).

through the following computation equation.

zt = σ
(
Wzxt + Uzh(t−1) + bz

)
, (2.7)

rt = σ
(
Wzxt + Urh(t−1) + br

)
,

ĥt = φ(Wzxt + Uz(rt

⊙
h(t−1)) + br).

The h(t−1) transferred from the cell at the previous time point and the xt value, which is a new input
value, are combined and divided into two directions and transmitted. One serves as the information
to be delivered to the gate, and the other serves as the LSTM’s candidate state. In the above formula,
zt represents the update gate, rt represents the reset gate, and ht represents the candidate state, and rt

resets the information of ht, and zt determines which information to pass on and on the hidden state.

3. Application of models

3.1. Data collection and preprocessing

The data applied to this study are weather data provided from the weather portal data every hour from
March 1, 2017 to February 28, 2022. From March 1, 2017, to February 28, 2021, the 5-year data
were used as training data to fit the model. In addition, the remaining data from March 1, 2021 to
February 28, 2022 were used to evaluate the performance of the model as test data. A total of four
weather variables such as temperature, humidity, cloud, and wind speed and the out-of-atmosphere
solar radiation proposed by Sahm (2017) were used as input variables of the model.

In order to proceed with the analysis, national weather data were reconstructed through pre-
processing. The points where the insolation values and transfer volumes were missing for a long
time were removed, and analysis was conducted at a total of 18 points as shown in Figure 1. In ad-
dition, solar radiation starts after sunrise, forming the highest point, and after sunset, a pattern with a
value of 0 is repeated every day. Due to this characteristic, there were many parts with 0 or NA-values
after sunset and before sunrise, and the time when most points are observed for each season is set for
sunrise and sunset, as shown in the Table 1, and the rest of the time is assumed not to be observed
(sunshine value = 0).

In addition, days when solar radiation was not observed much for 24 hours for each point were
excluded, and values were replaced using linear interpolation when temperature, humidity, cloudiness
were missing. Using the final preprocessed data, the prediction results were compared by fitting the
XGBoost, CatBoost, Simple RNN, LSTM, and GRU models.
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Figure 2: Solar radiation prediction point.

Table 1: Sunrise and sunset time by season

Season Month Sunrise time Sunset time
Spring 3, 4, 5 7 AM 7 PM

Summer 6, 7, 8 6 AM 8 PM
Autumn 9, 10, 11 7 AM 7 PM
Winter 12, 1, 2 8 AM 6 PM

3.2. Performance evaluations

Two measures of error were used: MAE and RMSE to compare suitable models in the previous
section. In general, MAPE is widely used to evaluate the model, but it is difficult to apply a MAPE
calculation because the solar radiation amount is often 0. Therefore, we evaluated accuracy on a scale
of Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), which are defined as follows.

MAE =

∑n
i=1 |Yt − Ft |

n
,

RMSE =

√∑n
t=1 (Yt − Ft)2

n
. (3.1)

Here, n is the number of data used for prediction, and is the observed value at time t, and is the
predicted value through the model at time t. In both MAE and RMSE, the smaller the value, the
higher the accuracy.

3.3. Performance results

ARIMAX was automatically designated using R’s auto.arima function without cross-validation. Other
models used Gridsearch CV for hyperparameter optimization. The Boosting family adjusted learning
rates (0.05, 0.07, 0.1) and max depth (3, 8, 10), while the RNN family tuned num unit (32, 64) and
optimizer (‘Nadam’, ‘Adam’, ‘RMSProp’). The hyperparameter was selected as the value with the
smallest MAE average value, and the results are shown in Table 2. XGB had the smallest average
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Table 2: Hyperparameter optimization results

Station
XGB

(max depth / learning rate)
CatBoost

(max depth / learning rate)
LSTM

(n unit / optimizer)
GRU

(n unit / optimizer)
Parameter MAE Mean Parameter MAE Mean Parameter MAE Mean Parameter MAE Mean

Gwangju 3 / 0.07 0.110 10 / 0.1 0.101 64 / Nadam 0.142 64 / RMSProp 0.127
Daegu 3 / 0.07 0.102 10 / 0.1 0.093 64 / Adam 0.126 64 / Adam 0.117

Daejeon 3 / 0.07 0.118 10 / 0.1 0.108 64 / Nadam 0.148 64 / Nadam 0.131
Mokpo 3 / 0.07 0.116 10 / 0.1 0.106 64 / Adam 0.145 64 / Adam 0.130

Bukgangneung 3 / 0.07 0.102 10 / 0.1 0.092 64 / Adam 0.129 64 / Adam 0.120
Bukchuncheon 3 / 0.07 0.112 10 / 0.1 0.104 32 / Adam 0.155 64 / Adam 0.137

Seoul 3 / 0.07 0.114 8 / 0.1 0.105 64 / Adam 0.139 64 / Adam 0.128
Suwon 3 / 0.07 0.107 10 / 0.1 0.099 64 / Adam 0.139 64 / Adam 0.122
Andong 3 / 0.07 0.109 10 / 0.1 0.097 64 / Nadam 0.139 64 / Nadam 0.122
Yeosu 3 / 0.07 0.109 10 / 0.1 0.098 64 / Adam 0.131 64 / Adam 0.122

Ulleung Island 3 / 0.07 0.129 10 / 0.1 0.118 32 / RMSProp 0.143 64 / RMSProp 0.129
Incheon 3 / 0.07 0.119 10 / 0.1 0.110 64 / Nadam 0.138 64 / Adam 0.129
Jeonju 3 / 0.07 0.111 10 / 0.1 0.100 64 / Nadam 0.139 64 / Adam 0.127

Jeju Island 3 / 0.07 0.115 10 / 0.1 0.103 64 / Nadam 0.138 64 / RMSProp 0.123
Changwon 3 / 0.07 0.105 10 / 0.1 0.092 64 / Adam 0.132 64 / Nadam 0.118
Cheongju 3 / 0.07 0.108 10 / 0.1 0.099 64 / Adam 0.135 64 / Adam 0.122
Pohang 3 / 0.07 0.134 10 / 0.1 0.121 64 / RMSProp 0.150 64 / Nadam 0.139

Heuksan Islnad 3 / 0.07 0.147 10 / 0.1 0.133 64 / Nadam 0.169 64 / Nadam 0.169

Table 3: Test data fit performance results

Station ARIMAX XGB CatBoost LSTM GRU Simple RNN
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Gwangju 0.278 0.486 0.114 0.226 0.107 0.224 0.165 0.305 0.159 0.299 0.157 0.267
Daegu 0.659 1.116 0.108 0.214 0.101 0.212 0.134 0.255 0.131 0.260 0.126 0.250

Daejeon 0.705 1.170 0.106 0.210 0.099 0.208 0.123 0.242 0.138 0.269 0.139 0.237
Mokpo 0.357 0.626 0.119 0.222 0.110 0.218 0.157 0.294 0.147 0.281 0.150 0.247

Bukgangneung 0.266 0.457 0.108 0.226 0.100 0.223 0.143 0.276 0.156 0.299 0.138 0.286
Bukchuncheon 0.260 0.468 0.123 0.241 0.113 0.234 0.198 0.379 0.157 0.303 0.132 0.249

Seoul 0.533 0.915 0.132 0.248 0.120 0.241 0.143 0.274 0.146 0.277 0.154 0.291
Suwon 0.237 0.427 0.111 0.217 0.104 0.212 0.138 0.265 0.132 0.254 0.144 0.249
Andong 0.220 0.388 0.111 0.216 0.100 0.207 0.154 0.280 0.142 0.264 0.126 0.225
Yeosu 0.298 0.504 0.142 0.267 0.132 0.261 0.192 0.351 0.168 0.319 0.257 0.441

Ulleung Island 0.396 0.733 0.199 0.374 0.188 0.368 0.236 0.425 0.216 0.413 0.229 0.381
Incheon 0.303 0.536 0.122 0.230 0.111 0.226 0.153 0.283 0.140 0.286 0.118 0.232
Jeonju 0.625 1.071 0.110 0.221 0.101 0.216 0.180 0.300 0.129 0.256 0.120 0.228

Jeju Island 0.271 0.451 0.122 0.241 0.114 0.242 0.155 0.299 0.139 0.299 0.189 0.303
Changwon 0.246 0.426 0.108 0.213 0.096 0.205 0.118 0.226 0.141 0.262 0.136 0.232
Cheongju 0.294 0.557 0.115 0.225 0.108 0.219 0.146 0.262 0.141 0.266 0.155 0.281
Pohang 0.248 0.455 0.148 0.279 0.135 0.270 0.189 0.369 0.160 0.307 0.148 0.272

Heuksan Islnad 0.278 0.497 0.153 0.291 0.144 0.290 0.154 0.300 0.184 0.345 0.154 0.296

MAE when max depth = 3 and learning rate = 0.07, and CatBoost was found to be the most suitable
hyperparameters for max depth = 10 and learning rate = 0.1 except for Seoul. In the case of LSTM and
GRU, n unit=64 was generally more accurate, and the average MAE value was small when ‘Adam’
and ‘Nadam’ were used as optimizers. The performance results are shown in Table 3 below with
hyperparameters optimized for each point, and the values with the best MAE and RMSE for each
point were underlined.

As a result of the model performance, it was confirmed that the MAE of the ARIMAX was over
0.25, the MAE of the RNN series models was about 0.16, and the Boosting series models were more
accurate than the RNN series with the Boosting level of about 0.12. In particular, among the Boosting
models, the CatBoost results showed the best performance at all points when viewed based on the
MAE. In addition, based on RMSE, CatBoost results were good at all points except Jeju Island. The
importance of the variables of XGB and CatBoost, which had good performance, varies slightly from
station to station, but the importance ranking was all the same in the order of solar radiation outside
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Figure 3: The variables importance of CatBoost in Changwon.

Figure 4: Solar radiation prediction point.

the atmosphere, cloudiness, humidity, and temperature, as shown in the example of Changwon (Figure
3).

To further improve the performance, the Boosting model was re-trained with the information from
the very previous day to be predicted by applying the time series cross-validation method as shown in
Figure 4 and then the model was re-fit. Table 4 below shows the results of comparing the observed
and predicted solar radiation values by repeating this process.

the CatBoost model, the accuracy of the results was improved. However, considering that the ex-
isting CatBoost MAE point average was 0.116 and the MAE point average was 0.113 when timeseries
cross-validation was applied, the calculation time to learn new algorithms and produce results per day
may be large compared to performance improvement. It seems that it is necessary to choose whether
or not timeseries cross validation is applied according to the purpose of use.

4. Conclusions

As interest in solar power prediction and power consumption prediction increases, the importance
of solar radiation prediction is also increasing. Therefore, this study was conducted for the purpose
of improving the accuracy of solar radiation prediction. Solar radiation was predicted by a total of
three weather variables, temperature, humidity, and total cloud volume, and solar radiation outside
the atmosphere, and the results were compared using various models. Various hyperparameters were
applied to the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models
to find optimal hyperparameters, and the results were compared. Based on the average MAE by
point, it was confirmed that XGB was 0.125, CatBoost was 0.116, simple RNN was 0.154, LSTM
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Table 4: Test data fit performance results using timeseries cross-validation

Station XGB
XGB

(timeseries cross-
validation)

CatBoost
CatBoost

(timeseries cross-
validation)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Gwangju 0.114 0.226 0.115 0.226 0.107 0.224 0.107 0.225

Daegu 0.108 0.214 0.108 0.213 0.101 0.212 0.100 0.212
Daejeon 0.106 0.210 0.105 0.208 0.099 0.208 0.098 0.207
Mokpo 0.119 0.222 0.119 0.221 0.110 0.218 0.109 0.219

Bukgangneung 0.108 0.226 0.108 0.225 0.100 0.223 0.099 0.223
Bukchuncheon 0.123 0.241 0.120 0.236 0.113 0.234 0.109 0.226

Seoul 0.132 0.248 0.128 0.244 0.120 0.241 0.116 0.237
Suwon 0.111 0.217 0.112 0.215 0.104 0.212 0.102 0.211
Andong 0.111 0.216 0.109 0.214 0.100 0.207 0.099 0.208
Yeosu 0.142 0.267 0.138 0.259 0.132 0.261 0.128 0.253

Ulleung Island 0.199 0.374 0.189 0.356 0.188 0.368 0.177 0.350
Incheon 0.122 0.230 0.119 0.227 0.111 0.226 0.109 0.224
Jeonju 0.110 0.221 0.109 0.217 0.101 0.216 0.099 0.213

Jeju Island 0.122 0.241 0.122 0.241 0.114 0.242 0.113 0.242
Changwon 0.108 0.213 0.104 0.209 0.096 0.205 0.094 0.203
Cheongju 0.115 0.225 0.114 0.224 0.108 0.219 0.106 0.219
Pohang 0.148 0.279 0.142 0.270 0.135 0.270 0.130 0.260

Heuksan Islnad 0.153 0.291 0.147 0.283 0.144 0.290 0.139 0.284

was 0.16, and GRU was 0.152, and the CatBoost model was the best. Time series cross-validation
also allowed XGB to improve performance from 0.125 to 0.123 and CatBoost from 0.116 to 0.113.
However, although all branches have improved their overall results with Time series cross-validation,
it is necessary to use it with this in mind because it may take a large amount of time to learn new
algorithms and produce results every day compared to performance improvement.
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Sorkun MC, Incel ÖD, and Paoli C (2020). Time series forecasting on multivariate solar radiation data

using deep learning (LSTM), Turkish Journal of Electrical Engineering and Computer Sciences,
28, 211–223.
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