• Title/Summary/Keyword: Solar energy harvesting

Search Result 131, Processing Time 0.026 seconds

Basic Study for Harvesting Unused Energy based on Plant-Microbial Electrochemical Technology (식물-미생물전기화학 기반의 미활용 에너지 회수 기초 연구)

  • Yu, Jaecheul;Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.219-224
    • /
    • 2019
  • In this study, we evaluated the energy production from plant-microbial fuel cells using representative indoor plants, such as Scindapsus aureus and Clatha minor. The maximum power density of microbial fuel cell (MFC) using S. aureus ($3.36mW/m^2$) was about 2 times higher than that of the MFC using C. minor ($1.43mW/m^2$). It was confirmed that energy recovery is possible using plant-MFCs without fuel. However, further research is needed to improve the performance of plant-MFCs. Nevertheless, plant-MFCs have proved their potential as a novel energy source to overcome the limitations of the conventional renewable energy sources such as wind power and solar cells, and could be employed to a power source for the sensor in charge of the fourth industrial revolution.

Eco-Friendly Residential District Plan Based on Site Suitability Analysis for Solar Energy - A Case Study of Daegu - (태양광 적지분석에 기반한 친환경 주거단지 계획 - 대구광역시를 대상으로 -)

  • SON, Jeong-Min;EUM, Jeong-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.153-169
    • /
    • 2017
  • The purpose of this study was to determine a suitable site using GIS for solar energy harvesting for an administrative district in Daegu, which aims at becoming a solar-powered city. From this result, the ecological housing complex was planned on a solar theme in the real site. For this analysis, various indicators and standards were selected based on previous studies and the indicators were divided into the location, exclusion, and class condition. The results showed that the suitable area was $153.95km^2$ and 17.6% for Daegu area, and the highest suitable area appeared to Dalseong-gun. Finally, using suitable site analysis results, we selected the site of Sinseo housing area in Dong-gu and we planned the ecological housing complex for solar energy. This study can be used as base data for the Daegu solar business and its establishment by considering various indicators for analysis of suitable areas in solar energy. Also, the result of the ecological housing complex plan would be helpful in promoting Daegu as a solar-powered city.

Effect of Thermal Post-Treatment using the Black Body Networking of Carbon Nano Structure For Internal Conduction from Solar Radiation (태양복사열 내부전도 성능향상을 위한 탄소 나노구조체 흑체코팅 열처리 효과연구)

  • Kim, Dae Weon;Jang, Seong Min;Lee, Du Hui;Park, June Yi;Kim, Young Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.159-164
    • /
    • 2021
  • The Improvement of thermal performance using heat treatment of carbon nanotubes coated on the copper heat sink to take the radiation energy from solar ray for the energy harvesting in earth orbit. Using the additive coating of purified CNT for the increase of specific area and development of thermal conductive capacity, the performance of heat transfer is improved about 0.181 K/W while applying the power of 22 W under temperature of 3.98℃. Coating of purified CNT shows increase of area and volume of thermal layer however it led the partial thermal resistance.

A Brief Review on Strategies for Improving UV and Humidity Stability of Perovskite Solar Cells Towards Commercialization (페로브스카이트 태양전지 상용화를 위한 자외선 및 수분 안정성 향상 전략)

  • Hwang, Eunhye;Kwon, Tae-Hyuk
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • With rapid growth in light-harvesting efficiency from 3.8 to 25.8%, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great attention as promising photovoltaic devices. However, despite of their outstanding performance, the commercialization of PSCs has been suffered from severe stability issues, especially for UV and humidity: (i) UV irradiation towards PSCs is able to lead UV-induced decomposition of perovskite films or catalytic reactions of charge-transporting layers, and (ii) exposure to surrounding humidity causes irreversible hydration of perovskite layers by the penetration of water molecules, resulting considerable decrease in their power-conversion efficiency (PCE). This review investigates current status of strategies to enhance UV and humidity stability of PSCs in terms of UV-management and moisture protection, respectively. Furthermore, the multifunctional approach to increase long-term stability as well as performance is discussed as advanced research directions for the commercialization of PSCs.

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting

  • Garcia-Garcia, Matias
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.377-389
    • /
    • 2022
  • The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.

Evaluation of Daylighting Performance in Office Building with Detailed Global Illuminance Data of Selected Korean Cities (정밀 전천공조도 데이터를 활용한 국내 주요도시 업무용 건물의 자연채광 활용성능 평가)

  • Choi, Su-Hyun;Shin, Sang-Yong;Seo, Dong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.37-46
    • /
    • 2016
  • In this study, long-term global illuminance data for 19 selected cities are calculated from modeled solar radiation data, AEER's TMY2. Perez model in Daysim daylight simulation tool is used for the solar radiation to illuminance conversion. And then, daylight availability in an unit office space is evaluated for the 19 cities. For this evaluation, various daylight performance indices are reviewed since static daylight performance index such as daylight factor (DF) and annual average global illuminance value is not suitable for actual performance evaluation in terms of visual comfort and light energy saving of a space. This study evaluated daylighting performance of prototypical office space module by introducing DA (daylight autonomy) and UDI (Useful Daylight Illuminance) index for major cities of Korea. Result shows that there is upto 18% of illuminance level difference with annual average global illuminance data, but if we consider useful daylight in a space the illuminance level difference among the cities are only within 5%. This means that for sustainable building design especially in daylight design, amount of annual global illuminance is not important factor even in cloudy cities. Daylight design and daylight harvesting system would return similar energy saving impact regardless of building location.

Leakage Current Energy Harvesting Application in a Photovoltaic (PV) Panel Transformerless Inverter System

  • Khan, Md. Noman Habib;Khan, Sheroz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.190-194
    • /
    • 2017
  • Present-day solar panels incorporate inverters as their core components. Switching devices driven by specialized power controllers are operated in a transformerless inverter topology. However, some challenges associated with this configuration include the absence of isolation, causing leakage currents to flow through various components toward ground. This inevitably causes power losses, often being also the primary reason for the power inverters' analog equipment failure. In this paper, various aspects of the leakage currents are studied using different circuit analysis methods. The primary objective is to convert the leakage current energy into a usable DC voltage source. The research is focused on harvesting the leakage currents for producing circa 1.1 V, derived from recently developed rectifier circuits, and driving a $200{\Omega}$ load with a power in the milliwatt range. Even though the output voltage level is low, the harvested power could be used for charging small batteries or capacitors, even driving light loads.

Utilization of Active Diodes in Self-powered Sensorless Three-phase Boost-rectifiers for Energy Harvesting Applications

  • Tapia-Hernandez, Alejandro;Ponce-Silva, Mario;Olivares-Peregrino, Victor Hugo;Valdez-Resendiz, Jesus Elias;Hernandez-Gonzalez, Leobardo
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1117-1126
    • /
    • 2017
  • The main contribution of this paper is the use of sensorless active diodes to generate the gate signals for a three-phase boost-rectifier with a self-powered control scheme. The sensorless operation is achieved making use of the gate control signals generated by the active diode schemes on each of the switching devices using a pulse width half-controlled boost rectifier modulation technique (PWM-HCBR). The proposed scheme synchronizes the gate control signals with a three phase voltage supply. Autonomous operation is obtained making use of the output DC bus to feed the control circuitry, the active diodes and the driver circuitry. The three-phase boost-rectifier is supplied by a three-phase permanent magnet electric generator powered by a solar concentrator dish with variable voltage and variable frequency conditions. Experimental results report an efficiency of up to 94.6% for 25 W and an input of 3.6 V peak per phase with 450.

A Calculation Method of in vivo Energy Consumption in Estimation of Harvesting Date for High Potato Solids (고 고형분함량 감자의 수확시기 예측모형을 위한 식물체내 에너지 소모량 추정)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • A simulation modeling for predicting the harvesting date with high potato solids consists of development of mathematical models. The mathematical model on potato growth and its development should be obtained by using agricultural elements which analyze relations of solar radiation quantity, temperature, photon quantity, carbon dioxide exchange rate, water stress and loss, relative humidity, light intensity, and wind etc. But more reliable way to predict harvesting date against climatic change employs in vivo energy consumption for growth and induction shape in a slight environmental adaptation. Therefore, to calculate in vivo energy loss, we take a concept of estimate of the amount of basal metabolism in each tuber on the basis of $Wm={\int}^m_tf(x)dt$ and $Tp=\frac{Tm{\cdot}Wm^{Tp}}{Wm^{Tm}}$. In the validation experiments, results of measuring solid accumulation of potato harvested at simulated date agreed fairly well with the actual measured values in each regional field during the growth period of 2005-2009. The calculation method could be used to predict an appropriate harvesting date for a production of high potato solids according to weather conditions.

Nanoarchitectures for Enhancing Light-harvesting and Charge-collecting Properties in Dye-sensitized Solar Cells

  • Jeong, Hyeon-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.13.1-13.1
    • /
    • 2011
  • Photoelectrochemical solar cells such as dye-sensitized cells (DSSCs), which exhibit high performance and are cost-effective, provide an alternative to conventional p-n junction photovoltaic devices. However, the efficiency of such cells plateaus at 11~12%, in contrast to their theoretical value of 33%. The majority of research has focused on improving energy conversion efficiency of DSSC by controlling nanostructure and exploiting new materials in photoelectrode consisting of semiconducting oxide nanoparticles and a transparent conducting oxide electrode (TCO) [1-5]. In this presentation, we introduce inverse opal-based scattering layers containing highly crystalline anatase nanoparticles and their feasibility for use as bi-functional light scattering layer is discussed in terms of optical reflectance and charge generation properties as a function of optical wavelength. A new ITO nanowire-based photoelecrode is also introduced and its unique charge collection property is presented, demonstrating potential use for highly efficient charge collection in DSSC.

  • PDF